GLASNIK MATEMATIČKO - FIZIČKI I ASTRONOMSKI PERIODICUM MATHEMATICO - PHYSICUM ET ASTRONOMICUM

Đuro Kurepa, Zagreb

On universal ramified sets

O univerzalnim granastim skupovima

Zagreb 1963

ON UNIVERSAL RAMIFIED SETS

Đuro Kurepa, Zagreb

1.1. There is no \aleph_{α} -universal well-ordered set of cardinality \aleph_{α} ; the interval $I\omega_{\alpha+1}$ consisting of all ordinals $<\omega_{\alpha+1}$ is \aleph_{α} -universal for well-ordered sets but is of cardinality $> \aleph_{\alpha}$. Any totally ordered set of cardinality $\le \aleph_0$ which is \aleph_0 -universal for well-ordered sets contains, isomorphically, the ordered set of rational numbers ([5], Theorem 1). Already G. Cantor ([1] p. 297) established that the set of rationals is \aleph_0 -universal for ordered chains and is of cardinality \aleph_0 .

The problem of universal ordered \aleph_{α} -chains was studied by \mathbf{F} . Hausdorff ([3], p. 182). E.g. the set $2(\omega_{\alpha})$ of all the dyadic ω_{α} -sequences ordered alphabetically is an \aleph_{α} -universal chain (of cardinality $2^{\aleph_{\alpha}}$ (cf. Hausdorff [3], p. 172—185, Sierpiński [7]). This means that any ordered chain of cardinality $\leq \aleph_{\alpha}$ is isomorph to a subset of $2(\omega_{\alpha})$. Any Hausdorff's η_{α} -set H^{α} is \aleph_{α} -universal for ordered chains $\leq \aleph_{\alpha}$.

The η_{α} -chains were particularly studied by L. Gillman [2].

- 1.2. Any (partly or totally) ordered set O_{α} of cardinality $\leq \aleph_{\alpha}$ could be mapped chain-isomorphically in a one-to-one manner into any Hausdorff's η_{α} -set H^{α} ; in other words, to any O_{α} corresponds some order destruction in H^{α} in order to get an order in H^{α} , denoted $H^{\alpha}(O_{\alpha})$, in which O_{α} is isomorphically imbeddable (in particular: incomparable points of O_{α} are carried into incomparable points in $H^{\alpha}(O_{\alpha})$). The question arises as to whether there exists a partial destruction of order in H^{α} such that any O_{α} be imbeddable into it. For $\alpha = 0$, the answer is in the affirmative.
- 1.3. The question concerning \aleph_{α} -universal ordered sets and quasi-ordered sets was studied by J. B. Johnston [4] and M. Novotný [6]. In particular, the ordinal power $\aleph_{\nu} \otimes \omega^*_{\alpha} 2$ is an \aleph_{α} -universal quasi-ordered set (Novotný [6] 1., p. 328, Satz 1.)¹.

¹ If X, Y are ordered sets, then the ordinal power XY consists of all the mappings $f: X \to Y$ ordered so that $f \le g$ in XY means that $x \in X$ and f(x) > g(x) imply f(x') < g(x') for some $x' \in X$ satisfying x' < x. $\mathbf{x}_{\alpha} \oplus \omega_{\alpha}^*$ means the ordered sum of an antichain of cardinality \mathbf{x}_{α} and of type ω_{α}^* .

Ovaj rad je financirao Savezni fond za naučni rad i Republički fond za naučni rad SRH.

1.4. In this paper we are concerned with universal ramifications or ramified sets, i.e. with ordered sets R such that, for every $a \in R$, the ideal

$$R(.,a) = \{x \; ; \; x \in R \land x < a\} \tag{1}$$

is a chain.

We shall see how the problem of \aleph_{α} -universal ramified sets is connected with the Hausdorff's η_{α} -sets. In particular, the set of mappings of ideals of $I\omega_{\alpha}$ into η_{α} is a starting point for construction of universal \aleph_{α} -ramified sets using a special extension of the -| relation between functions.²

- 2. An No-universal ramified set. Set Hoo.
- 2.1. Let us consider any \aleph_0 -universal ordered chain H^0 , e.g. the chain of rational numbers.
- 2.2. Set R (0). Let R (0) be the set of all mappings f such that Dom f is an initial proper segment of $I\omega_0$ and Antidom $f \subseteq H^0$. Consequently, every member of R (0) is a sequence of length $<\omega_0$ of points of H^0 . Let $\gamma = \gamma s$, for any sequence s, denote the length or height of the sequence s; γs is an ordinal number.

We order the set R(0) by the relation \leq in this way: for $x, y \in R(0)$,

$$x \leq y \langle = \rangle x =] y \vee (\gamma x \leq \gamma y \wedge x (., \beta) =$$

$$= y (., \beta) (\beta \leq \gamma x) \wedge x_{\gamma x - 1} \leq y_{\gamma x - 1}), \qquad (1)$$

provided the number $\gamma x-1$ exists. In other words, $x \leq y$ means that x is an initial segment of y or that $\gamma x \leq \gamma y$; in the last case for every proper initial segment x' of x one has x'-y as well as $x_{\gamma x-1} < y_{\gamma x-1}$ provided the ordinal $\gamma x-1$ exists (for a sequence x and any ordinal $\beta < \gamma x$ the corresponding β -segment of x is denoted by $x(\cdot,\beta)$).

- 2.3. One proves readily that $(R(0); \leq)$ is a ramified set; in particular for any $a = (a_0, a_1, \ldots, a_n, \ldots)_n <_{\gamma} \in R(0)$ the ideal R(0)(.,a) has no last number and consists of all the points of the form $(a_0^<), (a_0, a_1^<), \ldots, (a_0, a_1^< \ldots a_{\gamma}^< \ldots), \ldots$, where for any $z \in H^0$ the symbol $z^<$ runs through the set $H^0(.,z)$ of points of H^0 that are $\leq z$.
- 2.4. We stress particularly the chain KR(0) of R(0) consisting of all the single-point sets $\{x\}$, where $x \in H^0$.
- 2.5. I do not know whether already the set R(0) is \aleph_0 -universal; the trouble is that the set R(0) contains the infima of some antichains A; in other words, the set R(0) contains neighbouring finite

² For functions f, g we write f = |g| or g | = f provided $Dom f \subseteq Dom g$ and g | Dom f = f. By f - |g| we mean f = |g| and $f \neq g$.

parts inf A, A and consequently contains no point between inf A and all points of A. In order to remedy this we shall use a procedure of intercalation letting immediately follow every finite chain of the set by a replica of the ramification existing at that moment. E. g. if a, b, $c \\\in H^0$ and $a \\< b$ in H^0 then $(a) = \inf \{(b), (a, c)\}$ and $(b) \parallel (a, c)$.

2.6. Sets R^0 , R^1 R^2 , Let us constructs an ω_0 -sequence of increasing ramified sets R^0 , R^1 , ...; we put $R^0 = R(0)$; for every chain C of R^0 satisfying $kC < \aleph_0^3$ let R(C) be a replica of R^0 such that R(C) = R(C') if C, C' are cofinal, and $R(C) \cap R(C') = \emptyset$ if C, C' are not cofinal. We let R(C) immediately follow C and consider the chain K(R(C)) of R(C) (see **2.4.**); we put it between C and the cone

$$R^{0}(C, .) = \{y ; y \leqslant R^{0} ; C < y\}, \qquad (1)$$

in such a way that $R(C) \setminus KR(C)$ be incomparable with $R^{0} \setminus R^{0}$ (., C], where

$$R^{0}(., C] = \{x ; x \leq R^{0} ; x \leq C\}.$$
 (2)

We denote by R^1 the ramified set

$$R^{\theta} \cup \bigcup_{C \subseteq R^{\theta}} R^{\theta} (C, .) . \tag{3}$$

By repetition of the same operation we construct R^2 , then R^3 , etc.

2.7. The Universal set H_{00} . The union of the sets R^r ($\nu < \omega_0$) is the requested set H_{00} :

$$H_{00} = \bigcup R^{\nu}, (\nu < \omega_0). \tag{1}$$

2.7.1. The cardinality of H_{00} is \aleph_0 .

As a matter of fact each of the sets R^{ν} in (1) is countable; therefore the set H_{00} too has \aleph_0 points.

- **2.7.2.** The set H_{00} is ramified; in particular, for every point $x (\leqslant H_{00})$ the set $H_{00}(.,x)$ is a chain containing no maximal member. If x, y are 2 distinct (incomparable) members of H_{00} , then $H_{00}(.,x)$, $H_{00}(.,y)$ are distinct sets (each containing points not belonging to the other one).
 - **2.7.3.** For every subset X of H_{00} satisfying $k \times X < \aleph_0$ the set

$$\bigcap_{x} H_{00}$$
 (., x) $(x \leqslant X)$

is a chain containing no last member; therefore, if X is not totally ordered the point inf X does not exist.

2.7.4. Theorem. The ramified set H_{00} contains isomorphically every ramified set R of cardinality $\leq \aleph_0$, i. e. every ramified set $\leq \aleph_0$ is imbeddable in H_{00} .

³ We could assume that kC = 1; the wording in the text is suited for $\alpha > 0$ too.

Proof. Let us well-order both R and Hoo:

$$R = \{r_0, r_1, r_2, \dots, r_m, \dots\} \quad (m < \omega_{(kR)})$$
 (2)

$$H_{00} = \{h_0, h_1, h_2, \ldots, h_n, \ldots\}, n < \omega_0.$$
 (3)

Here, $\omega_{(kR)}$ denotes the first ordinal number α such that $kI\alpha = kR$, $I\alpha = \{\xi; \xi < \alpha\}$.

We put $i_1(r_0) = h_0$. Let m be any ordinal of cardinality $\langle k | R \rangle$ and suppose that the m-sequence of increasing isomorphisms

$$i_e \mid \{r_0, r_1, \ldots, r_j, \ldots\}_{j < e} (e < m)$$

into H_{00} is defined for every e < m; let us define the isomorphism $i_m \mid \{r_0, r_1, \ldots, r_{m-1}\}$ as the following extension of the isomorphism i_{m-1} . The domain of i_m is Dom $i_{m-1} \cup \{r_{m-1}\}$; we consider the following partition of Dom $i_{m-1} = D_{m-1}$ by the point r_m :

$$D_{m-1} = D_{m-1}(., r_m) \cup D_{m-1}(r_m, .) \cup CD_{m-1}[r_m];$$
we put $CD_{m-1}[r_m] = \{x \; ; \; x \in D_{m-1}, \; x \parallel r_m\}.$ (4)

We define $i_m r_m$ as the first element h_n in the well-order of $H_{00} \setminus i_{m-1} D_{m-1}$ such that, corresponding to the relation (4), one has

$$i_m D_{m-1} = i_{m-1} D_{m-1} (., h_n) \cup i_{m-1} D_{m-1} (h_n, .) \cup CD_{m-1} [h_n].$$
 (5)
we put $CD_{m-1} [r_m] = \{x; x \leq D_{m-1}, x \parallel r_m\}.$

The existence of such an h_n is implied by the following argument. The disjoint partition (4) of D_{m-1} implies the corresponding disjoint partition

$$i_m D_{m-1} = A \cup B \cup C$$
, where (6)

$$A = i_{m-1} D_{m-1} (., r_m), B = i_{m-1} D_{m-1} (r_m, .),$$

$$C = i_{m-1} D_{m-1} \setminus (A \cup B).$$
(7)

In particular, h_n should satisfy the relations

$$A. < x < \cdot B \text{ and } x \mid \cdot C \tag{8}$$

(the sign $A \cdot \text{or } A$ or A denotes every member of A). Now, let us consider the sets

$$A_0 = \bigcap_{a \in A} H_{00}(., a), B_0 = \bigcap_{b \in B} H_{00}(., b), C_0 = \bigcap_{c \in C} H_{00}(., c).$$
 The sets

 A_0, B_0, C_0 are chains in H_{00} , none having a last element (consequence of the fact that the cardinality of every of the sets A, B, C is $\langle \aleph_0 \rangle$ (cf. 2.7.3). A_0 is a proper initial part of B_0 . Let us consider the set $E = B_0 \cap C_0$. E is a non empty chain, because the set $E \cap C$ is $\langle \aleph_0 \rangle$. Since every member of E is incomparable to every member

of C one concludes that the set E is a proper part both of B_0 and C_0 , and the sets $B_0 \setminus C_0$, $C_0 \setminus B_0$ are non empty. In particular, the set $B_0 \setminus C_0$ is non empty; since the set A_0 is a proper initial portion of B_0 , we conclude that the set

$$B_0 \setminus (A_0 \cup C_0) \tag{9}$$

is non empty; every point x of the set (9) satisfies (6) and yields the requested partition (6); therefore it is sufficient to take for x the first member h_n of the well-order (3) belonging to the set (9).

The existence of h_n is proved.

Finally one defines the mapping $i \mid R$ as the one which on $\{r_0, r_1, \ldots, r_j, \ldots\}_{j < m}$ equals i_m , for every m < kR. One sees that $i \mid R$ is an isomorphism of R into H_{00} . Q. E. D.

3. Universal ramified sets $H_{\alpha\alpha}$.

Starting from any η_{α} -set H^{α} one constructs in a way analogous to considerations in 2. an \aleph_{α} -universal ramified set $H_{\alpha\alpha}$; if $kH^{\alpha} \leq 2^{\aleph_{\alpha}}$ the cardinality $kH_{\alpha\alpha}$ of $H_{\alpha\alpha}$ equals kH^{α} for every non limit ordinal α ; in particular, to Hausdorff's normal η_{α} -set (this set is of cardinality $2^{\aleph_{\alpha}-1}$) is associated the \aleph_{α} -universal ramified set of cardinality $2^{\aleph_{\alpha}-1}$.

4. On the $\eta_{\alpha\alpha}$ -sets. Let α be any ordinal number; an $\eta_{\alpha\alpha}$ -ordered set is any ordered set O satisfying the following condition $C(\alpha)$:

Condition C(a). Any ordered subset of cardinality $\leq \aleph^a$ admits in the set an extension in every direction. Precisely this means that for any ordered subset X of O such that $k X \leq \aleph_a$ and for any ordered set X_0 such that $X_0 \supseteq X$ and $k(X_0 \setminus X) = 1^4$ there exists a point $p \in O$ depending on the single point x_0 of $X_0 \setminus X$ such that the identity mapping on X plus the mapping $x_0 \to p(x_0)$ be an isomorphism between the sets $X_0 = X \cup \{x_0\}$ and $X \cup \{p\}$.

- If O denotes some special kind of ordered sets (like chains, ramified sets, lattices, etc.) the corresponding C (α)-condition should be modified in an obvious way subjecting X_0 to belong to the same kind of orders.
- 5. Theorem. Let a be any ordinal number; any two 1) totally ordered sets 2) ramified sets, 3) ordered sets, each of cardinality \aleph_{α} and satisfying the condition $C(\alpha)$ are isomorphic (we do not know whether-except the case $\alpha = 0$ -any such $\eta_{\alpha\alpha}$ -set of cardinality \aleph_{α} exists).

Proof. Let S and T be any two $\eta_{\alpha\alpha}$ -sets from the theorem. We might assume that S is disjoint from T. Let

$$S = (s_0, s_1, \dots, s_r, \dots)_{\nu < \omega_\alpha}, \tag{1}$$

$$T = (t_0, t_1, \dots, t_r, \dots)_{r < \omega_{\sigma}}, \tag{2}$$

⁴ Irrespective whether the relation $X \subseteq O$ holds or does not hold.

be a normal well-order of S and of T respectively. We shall construct an isomorphism from S onto T as union of an increasing ω_{α} -sequence i_{ν} ($\nu < \omega_{\alpha}$) of isomorphisms between some parts of S and T.

We define the isomorphism $i_0 \mid s_0 = t_0$, i. e. $s_0 = i_0^{-1} \mid t_0$. Let ν be any ordinal between 0 and ω_a and let us suppose that an increasing ν -sequence of isomorphisms i_{ν} , $(\nu' < \nu)$ with domains $< \aleph_a$ is defined, so that any two consecutive domains differ by a single point. Let us define the isomorphism i_{ν} and its inverse i_{ν}^{-1} too.

If ν is a limit ordinal we define i_{ν} as the union of the mappings i_{ν} , i. e. Dom $i_{\nu} = \bigcup$ Dom i_{ν} , and $i_{\nu} x = i_{\xi} x$, for every $x \in \text{Dom } i_{\xi}$. If ν has an immediate predecessor, let us consider the number $\nu - 1$.

I If $\nu-1$ is even we define the mapping i_{ν} as the extension of $i_{\nu-1}$ satisfying the following two conditions:

Dom i_{ν} is the union of Dom $i_{\nu-1}$ and of the first member s in (1) belonging to the set $S \setminus \text{Dom } i_{\nu-1}^{-1}$; we define $i_{\nu}s$ as the first member in the well-order (2) of T that does not belong to Dom $i_{\nu-1}^{-1}$. The existence of the point $i_{\nu}s$ is implied by the fact that T satisfies the C(a)-condition. Namely, we consider the ordered set $B_0 = B \cup \{s\}$, where $B = \text{Dom } i_{\nu-1}^{-1}$. Since B is a subset of cardinality $< \aleph_a$ in T and since T satisfies the C(a)-condition, there exists a point p in $T \setminus B$ such that the mapping on $B \cup \{s\}$ equaling p in s and being identity on s is an isomorphism between s in s and s in s in s and s in s in s and s in s i

II If $\nu-1$ is odd, we construct i_r and i_r^{-1} by reversing the role of the sets S, T in the case I.

The existence of i_r being proved for every $r \ll \omega_a$, the isomorphism $i: S \to T$ between S and T is proved.

- **5.1.** Theorem 1. Any ordered set O having the C(a) property is \aleph_a -universal.
 - 2. Every maximal subchain of O is a Hausdorff's η_{α} -set.

The proof of 5.1.1. runs like the proof of Theorem 5 (cf. the proof of Theorem 7).

As to 5.1.2. cf. 6.1.

6. On an intercallation condition of ordered sets (or graphs).

Let a be any cardinal number $\neq 0$; we say that an ordered set O has the a-intercallation property if for any ordered triplet (A, B, C) of subsets of O, each of cardinality $\leq a$, the conditions: every member of A precedes every member of B and every member

of B is incomparable to every member of C, imply the existence of a point p = p(A, B, C) in O such that

$$A \cdot \langle p \rangle \langle B \text{ and } p \parallel C; \text{ symbolically:}$$

$$(A, B, C \subseteq O) \wedge (kA, kB, kC \langle a) \wedge (A \cdot \langle \cdot B \parallel \cdot C) = \rangle$$

$$= \rangle \bigvee_{x} x \leqslant O \wedge A \cdot \langle x \langle \cdot B \wedge x \parallel \cdot C. \rangle$$

$$(1)$$

The conclusion says that the subsets A, B, C respectively are in the left x-cone R(.,x) of R, in the right x-cone R(x,.) and in the complement of the x-cone R[x] of R respectively.⁵

6.1. Since by convention the empty set preceds every set, the previous a-condition implies (put $A=\phi$) that R has no first point; analogously, if R has the a-property, R has no last point (put $B=\phi$); analogously, to every chain C in R satisfying kC < a corresponds some $x \le R$ and some $y \le R$ such that x < C < y.

One proves readily that every maximal chain of R, provided R has the \aleph_a -intercallation property, is a Hausdorff η_a -set.

- 7. Theorem 1. Every ramified set R with the \aleph_{α} -intercallation property contains isomorphically every ramified set R of cardinality $\leq \aleph_{\alpha}$.
- 2. Any two ramified sets R, R' of cardinality \aleph_a and with the \aleph_a -intercallation property are similar to each other (such sets exist at least for a = 0).
- 3. The $C(\alpha)$ condition and the \aleph_{α} -intercallation property are equivalent for any ramified set R.

Proof of 7.1. Let $wR = (r_{\nu})_{\nu}$ and $wR' = (r'_{\sigma})_{\sigma}$ be a normal well-order of R and of R' respectively. One defines by induction the following mapping i of R' into R: let $ir'_{0} = r_{0}$; let σ be any ordinal such that the isomorphism $i: wR'(\cdot, \sigma) \to R$ is defined; obviously

$$X \equiv wR'(.,\sigma) \subseteq wR'. \tag{2}$$

If in (2) the sign \subseteq means =, the procedure is finished: i is a requested isomorphism; if \subseteq in (2) means \subseteq , we consider the point r_{σ} and define ir_{σ} as the first point $x = r_{\nu}$ such that

 $A (= iX (., r_{\sigma}')) . < x < . X (i_{\sigma}', .) = B$ and x || . C where C denotes the set of all the points of X, each incomparable to r_{σ}' . Since the sets A, B, C are $< \aleph_{\alpha}$ each and since A < B, B || C, the \aleph_{α} -property of R implies the existence of the requested point r_{r} .

 \Rightarrow $\forall x \in G \land A \cdot \varrho x \varrho \cdot B \land x \varrho' \cdot C.$

The same statement could be formulated for oriented graphs; for a symmetrical graph (G, ϱ) the a-intercallation property would read as follows: $A \subseteq G \land B \subseteq G \land C \subseteq G \land A \cdot \varrho \cdot B \land B \cdot \varrho' \cdot C \land [A, B, C] < a \Longrightarrow$

The proof of Theorem 7.2 runs like the proof of Theorem 5.

Proof of Theorem 7.3. Since obviously every ramified set with $C(\alpha)$ -property has also the \aleph_{α} -intercallation property, let us prove the converse statement: If a ramified set R has the \aleph_a -intercallation property, then R has the $C(\alpha)$ property, i. e. R is a $\eta_{\alpha\alpha}$ -set.

Now let X be any subset of R of cardinality $\langle \aleph_a \rangle$; let q be a point such that $q \notin X$ and that the set $X_0 = X \cup B \cup \{q\}$ is ramified; then we have the decomposition $X = A \cup B \cup C$, where A = $= X(.,q), B = X(q,.), C = X \setminus A \setminus B.$

The set R having the \aleph_{α} -intercallation property, there exists some point p satisfying the relations (1) in 6; the set $X \cup \{p\}$ as a subset of R is an extension of X such that the identity mapping on X plus the mapping $p \to q$ be an isomorphism between $X \cup \{p\}$ and $X \cup \{q\}$.

8. Remark. It should be interesting to produce an ordered set with the \aleph_{α} -intercallation property but not having the $C(\alpha)$ --property.

> Institute of Mathematics University of Zagreb

BIBLIOGRAPHY:

[1] G. Cantor, Gesammelte Abhandlungen, Berlin, 1932, 8+486,

[2] L. Gillman, Some remarks on η_a -sets, Fund. Math. 43 (1955), 77—82,

[3] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914, VIII+476, resp. Chelsea Publ. Comp., New York, 1949,
[4] J. B. Johnston, Universal infinite partially ordered sets, Proc. Amer.

Math. Soc. 7 (1956), 507—514,

[5] Dj. Kurepa, Sur les ensembles ordonnés dénombrables, Glasnik Mat.-Fiz. Astr. 3 (1948), 145—151,

[6] M. Novotný, 1. Sur la représentation des ensembles ordonnés, Fund. Math. 39 (1952), 97-102, 2. Über quasi-geordnete Mengen, Čehoslov. Matem. Žurnal 9 (1959), 327-333,

[7] W. Sierpiński, Sur une popriété des ensembles ordonnés, Fund. Math. 36 (1949), 56—67.

O UNIVERZALNIM GRANASTIM SKUPOVIMA

Đuro Kurepa, Zagreb

1.1. Nema Ν_α — univerzalna dobro uređena skupa s Ν_α članova (tj. nema dobro uređena skupa od Να članova u koji bi se svaki dobro uređen skup sa $\leq \aleph_{\alpha}$ članova mogao izomorfno smjestiti). Problem o \aleph_a — univerzalnim uređenim lancima izučavao je Hausdorff [3] p. 182, pa je npr. skup 2 (ω_{α}) svih dijadskih ω_{α} — nizova uređen alfabetski određen 🛪 — univerzalni lanac. Svaki Hausdorffov η_a — skup H^a je \aleph_a — univerzalan za uređene lance.

- 1.2. Svaki uređen skup O_{α} kardinalnosti $\leq \aleph_{\alpha}$ može se preslikati obostrano jednoznačno u svaki η_{α} skup H^{α} tako da svaki lanac L iz O_{α} prelazi u slični lanac u H^{α} . Može li se u H^{α} poredak djelomično uništiti tako da se O_{α} može uroniti u tako preuređen skup? Ako je $\alpha = 0$, odgovor je potvrdan.
- 1. 3. Uređene i kvazi-uređene skupove koji su \aleph_{α} univerzalni izučavali su Johnston [4] i Novotný [6].
- 1. 4. U ovom članku promatrat ćemo univerzalne granaste skupove tj. skupove za koje je svaki skup oblika (1) posve uređen.
 - 2. O jednom 🖏 univerzalnom granastom skupu. Skup Hoo.
- 2. 2. 2. 5. Neka je R(0) skup svih preslikavanja f kojima je oblast pravi segment od $I\omega_0$ a protuoblast je u H^0 , gdje je H^0 bilo koji \aleph_0 univerzalan lanac. Skup R(0) uređujemo relacijom \leq definiranom u (1) pa se vidi da je R(0) granast i u njemu se ističe lanac KR(0) sastavljen od svih jednočlanih članova iz H_α . Ne znamo da li je možda već skup $(R(0), \leq) \aleph_0$ univerzalan granast skup.
- **2. 6.** Za svaki lanac C iz R (0) potencije $< \aleph_0$ promatra se primjerak R (C) od $R^0 = R$ (0) tako da bude R (C) = R (C'), odnosno R (C) $\cap_i R$ (C') $= \emptyset$, već prema tome da li su C, C' kofinalni ili nisu kofinalni; zatim stavimo R (C) između C i konusa (1), tako da R (C) \setminus KR (C) bude neusporedljiv sa $R^0 \setminus$ (2). Neka R^1 označuje granast skup (3). Slično se dalje definiraju R^2 , R^3 , . . .
 - **2.7.** Skup H_{00} je prema (1) unija skupova R^r .
- **2.7.4.** Teorem. Skup H_{00} je granast skup od \aleph_0 tačaka i obuhvaća izomorfno svaki granast skup potencije $\leq \aleph_0$.

Dokaz se provodi izgradnjom izomorfizma kao unije uzlazna niza izomorfizama.

- 3. Univerzalni granasti skupovi $H_{\alpha\alpha}$ izgrađuju se polazeći od η_{α} -skupa slično kao što je bilo za $\alpha=0$.
- 4. $\eta_{\alpha\alpha}$ -skupovi. To su uređeni skupovi za koje vrijedi uslov $C(\alpha)$: svaki uređen skup potencije $< \aleph_{\alpha}$ dopušta proširenje u svakom smjeru.
- 5. Teorem. Neka je a redan broj; bilo koja dva skupa koja su: 1) potpuno uređena, 2) granasta, 3) uređena, a potencije su \aleph_a i zadovoljavaju uslov C (a) međusobno su izomorfna (osim slučaja a=0, nepoznato je da li postoji $\eta_{\alpha\alpha}$ -skup od \aleph_{α} tačaka).
- **5.1.** Teorem. (i) Svaki uređen skup O sa C (a) svojstvom je \mathbf{x}_a -univerzalan. (ii) Svaki maksimalan lanac iz O je Hausdorffov η_a -skup.
- 6. O jednom svojstvu uklapanja uređenih skupova i orijentiranih grafova.

Neka je a glavni broj ± 0 ; kazat ćemo da uređen skup O ima svojstvo a-uklapanja, ako za svaku uređenu trojku (A, B, C) podskupova od O sa svojstvima: 1) A, B, C su potencije < a, 2) svaki član od A prethodi svakom članu od B i 3) svaki član od B je neusporedljiv sa svakim članom iz C, postoji tačka p = p(A, B, C) iz

O koja je između A i B a neusporedljiva je sa svakim elementom iz C^1 .

- 7. Teorem 1. Svaki granast skup R sa svojstvom \aleph_a -uklapanja sadržava izomorfno svaki granast skup kardinalnosti $\leq \aleph_a$;
- 2. Bilo koja dva granasta skupa R, R' kardinalnosti \aleph_a i sa svojstvom \aleph_a -uklapanja međusobno su izomorfna.
- 3. C(a) -svojstvo i svojstvo \aleph_a -uklapanja međusobno su dva ekvivalentna svojstva za granaste skupove.
- 8. Primjedba. Bilo bi zanimljivo definirati uređen skup sa svojstvom \aleph_{α} -uklapanja a bez $C(\alpha)$ -svojstva.

(Primljeno 24. XII 1962.)

¹ Slično se definira svojstvo α-uklapanja za orijentirane grafove.