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Preface

The first conference on Logic and Computer Science was held in Novi Sad in 1987. The
following conferences were held respectively in Ohrid, Kragujevac, Dubrovnik, Cavtat, and
Novi Sad (twice.) The aim of the conferences was to gather logicians and computer scientists
and to encourage their joint work and the interchange of ideas.

The VIII conference on Logic and Computer Science £/&4 97 is taking place at the Institute of
Mathematics, Faculty of Science, University of Novi Sad, Novi Sad, Yugoslavia, September | -
4, 1997. The conference is international and its intention is to explore all fields related to
theoretical and mathematical foundations of computer science.

The conference features four preliminary and invited lectures and presentations of 31 papers.
29 papers are printed in this volume, while the rest will be included in the accompanying
booklet (due to strict printer’s deadline.) All papers were reviewed by at least two members of
the program committee and/or by other competent specialists.

We use this opportunity to express our thanks to the conference organizers, all members of the
program committee, referees, and finally to the conference sponsor NIS - Novi Sad.

Ratko To%i¢ and Zoran Budimac, editors
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Von Neumann Regularity in Applied Algebra,
Computing and Logic

Sam L. Blyumin

LSTU
30 Moskovskaya, Lipetsk 398 055, Russia
e-mail: sam@blyumin.lipetsk.su

Abstract. 1. Von Neumann regular element, firstly defined in ring R [1], is
naturally defined in semigroup S [2]: {a € S is regular} <= {g € 5 exist such
that @ - ¢ - a = a};g¢ is called the generalized inverse for a [3]; any such g is
denoted by a~.

2. Investigation and solution of equation a -z = b in groupoid ¢ is the
important area for application of regularity [3]: (i) if ¢ is 5 and a is regular,
then {a-x = b is solvable}<=>{a -a~ - b = b for some a~; some solution is
r=a" -b}; (i1) if (is K and a is regular, then the same hold, general solution
isr=a" b+y—a -a-y any y € R (related topic: [4]).

3. In some applications (e.g. usnal and fuzzy set theory, usual and fuzzy
logic, decision theory a.0.[5]) semirings SR are used, i.e. algebraic structures with
two distributively connected associative operations (distributive bisemigroups);
regularity leads to notions of generalized inverse as well as generalized opposite
elements; investigation and solution of equations in such (more general than in
rings) sitnation are discussed in the lecture (related topic: [6]).

4. In some applications nonassociative algebraic structures, e.g. arbitrary
groupoids (7, are used; then the notion of regularity bifurcates, e.g. the regularity
of the first or the second kind: (a-g¢)-a =a or a-(g-a) = a; investigation and
solution of equations in such (more general than in semigroups) situation are
discussed in the lecture (related topic: [7]).

5. Some another identities than associativity identity may hold in groupoid,
e.g.:r-r =z (idempotency), (z-y) -z =z -(y-z) (elasticity), z - (y - (z - 2)) =
((z-y)-x) =z (moufang) a.o. Thus problem arises of identities and corresponding
groupoids’ manifolds generation and classification with search of nonisomorphic
classes and their representatives as in [8] for the case of semigroups; this problem
needs use of computer realization. Some results are presented in [9] and are
discussed in the lecture.

6. Wide area of algebra applications in geometry and physics deals with
Clifford algebras (in wide sense, including Grassmann algebras); simplest are

2

the complex number field C = {a+b-1,1* = —1}, the dual "number” algebra V

I-1



I-2 Sam L. BLyumin

= {a+b-e,e* =0}, and the double "number” algebra U = {a+b-¢,e? = 1}
(a,b € R), because of any Clifford algebra A is the skew tensor product of some
copies of C,V,U [10]. Regularity in V,U is considered in [4]. Thus problem arises
of expression of skew tensor product element generalized inverse via generalized
inverses of factors. Some results are presented in [11] and are discussed in the
lecture.

7. Clifford algebras are Zo— graduated algebras, or superalgebras [10]. Some
results on invertibility of such algebra elements are presented in [12] and are
discussed in the lecture.

8. If criterion of solvability of equation (see item 2 above) doesn’t hold then
exact solution of equation doesn’t exist; it is possible however in some cases
to find approximate (in some sense) solution using corresponding special type
of generalized inverse. Classical type is the weighted pseudoinverse (¢ = A]T, N
for complex matrix A which is defined by the relations [3] M - A - G- A =
M-AN-G-A-G=N-G(M-AG"=MAGN-G-A*=N-G-Aand
defines the general weighted pseudosolution X = ALN -B+Y — ALN ALY
any matrix Y, of matrix equation 4 - X = B, minimizing the weighted Frobenius
matrix norm of residual A- X — B. Some applications to optimal control problems
are presented in [13] and are discussed in the lecture.

9. Optimizational aspects of generalized inversion outlined above are dis-
cussed in [14] and in the lecture.

10. Computational aspects of generalized inversion are connected with elab-
oration of effective algorithms. Classical Greville recurrent column-wise pseu-
doinversion algorithm is extended in [4] to recurrent column-wise algorithm for
generalized inversion of a matrix over an associative ring. In combination with
its row-wise version it allows to give the constructive proof of classical theo-
rem: mabrix ring over regular ring is regular ring too. Recurrent nature of such
algorithms finds usefull applications in different areas. As an example, the su-
perpositional nonlinear regression is developed in [15] and is discussed in the
lecture.

Some another related topics will be discussed in the lecture too.
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Coordinated products of iterative algebras

Ivan A. Malcev
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(‘The text of the lecture will be available during the conference.)
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On two counterfeit coins conjecture

Ratko Tosié

Institute of Mathematics, University of Novi Sad
Trg Dositeja Obradovi¢a 4, 21000 Novi Sad, Yugoslavia
e-mail: ratosic@unsim.im.ns.ac.yu

Abstract. The purpose of this paper is to survey the results concerning
the combinatorial search problems, with special attention to two coun-
terfeit coins conjecture.

Key Words and Phrases: search theory, group tests, optimal proce-
dure

AMS Subject Classification (1991): 90B40

1 Introduction

The determination of "defective” elements in a population of a series of group
tests has received considerable attention in recent years. While traditionally
group testing literature employs probabilistic models, the combinatorial model
has cut his own share. Futhermore, combinatorial group testing has tied its
knots with many computer science subjects: complexity theory, computational
geometry and lerning models among others. It has also been used in multiaccess
communication and coding.

Unlike many other mathematical problems which can trace back to earlier
centuries and divergent sonrces, the origin of group testing is pretty much pinned
down to a fairly recent event — World War 11, and is usually credited to a
single person — Robert Dorfman. The problem goes back to questions arising in
connection with medical examination during the World War II; for some early
papers see, e.g., Dorfian [27], Sterrett [80] or Sobel [78]. Katona [54] gives an
excellent overwiew of the subject.

Consider the following problem. Let X = {z,,z4,...,z,} be a set of n coins,
indistinguishable except that exactly m of them are slightly heavier than the rest
(in the sense specified below). Given a balance scale, we want to find an optimal

Work supported by Ministry of Science and Technology of Serbia.
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weighing procedure, lL.e., a procedure which minimizes the maximum number of
steps (weighings) which are required to identify all heavier coins.

We suppose that all heavier coins are of equal weight, and so are all light
coins. If A is the weight of a light coin, then the weight of a heavy coin is less than
%)\, so that the larger of two numerically unequal subsets of X is always the
heavier. So it is clear that no information is gained by balancing two numerically
unequal subsets of X. We also suppose that the scale reveals which, if either, of
two subsets of X is heavier but not by how much.

Step (A, B) will mean the balancing of A agains B, where 4 and B are
digjoint subsets of X of the same cardinality. The possible outcomes are:

(a) A= B (the sets balance),

(b) A # B (the sets do not balance).

We use the notations A < B, A > B, where < and > between two sets mean
”is lighter than” and ”is heavier than” respectively.

By ptm(n) we denote the number of steps (weighings) in an optimal procedure.
It follows by information—theoretical reasonings that

() > flogs (1)1

2 One Counterfeit Coin

The question of finding a single counterfeit coin from a set of regular coins in
the fewest number of weighings using just a balance beam has been a notorious
problem. The regular coins are all of the same weight while the counterfeit coin
1s a different weight. A large number of ingenious solutions exist, some based on
sequential procedure and some not.

The problem was popular during World War II; see [33,34,40,41,42 53,64,74,90]
for some history. Many authors gave the following general solution to the prob-
lem of underweight counterfeit coins:

If3¥=1 < n < 3% then k weighings suffice to show if there is (and to identify)
a counterfeit comn among n cowns.

If it is known that a counterfeit coin exists, then k weighings will suffice to
identify the coin from among n coins if 3*~! < n < 3% In the case when it is
not known if the counterfeit coin is heavy or light, Dyson [29] gave an elegant
solution using ternary labels. In this case, & weighings suffice

(a) if n < 3k2_3 and 1t 1s required to find if the counterfeit coin is heavy or
light;

(b) ifn < #T_l, given an extra coin known to be good, and it is required to
find if the counterfeit coin is heavy or light;

(¢)n < 3k2+1 if there is a good coin but the relative weight of of the counterfeit
coin is not required.

Blanche Descartes [26] gave an interpretation of these results in verse.

All the solutions so far cosider coins to be distinguishable when in the balance
pan. Guy and Nowakowski [44] show that if the coins in a scale pan are to be

; . C . e . k=3
cosidered as a single set, then k weighings will find a coin amongst n < T3_"=1
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Shapiro’s problem [76] assumes n coins, n— | of weight a and one of weight b,
where @ and b are known, and an accurate scale. He asks for the least number of
weighings to determine which coin has weight b, where the weighing scheme must
be given in advance. Soderberg and Shapiro [79] ask the more general question
of how many weighings are needed to determine which of n coins are of weight
a and which of weight b if the numbers of each are not known in advance. They
show that

(a) ju(n) 2 getngmys

(I) ) (353 4+ k) < 3‘

() (55 12k +5)) <
(d) pi(n) = O(55)-
Erdos and Rényi [30] show that

n ninlnn

)= log, n * (Inn)? )

Liu [61], Cantor and Mills [16] and Lindstrom [56,57,58] give explicit weighing
schemes for n = 2¥=1k (also see [1]).

The " Lower Slobbovian Counterfeiters” [13,47] and ApSimon’s Mints prob-
lem [8] are examples of another variant of deciding which coins are irregular out
of n coins when the number of weighings is fixed.

3 Two Counterfeit Coins

Oddly enough, the corresponding problem for more than one defective coin has
attracted little attention. At the suggestion of R. Bellman, the problem for two
coins was investigated for the first time by Cairns (1955). The problem is of
significance because it represents one of the simplest examples of a sequential
testing problem replete with the difficulties of combinatorial nature and with the
difficulties inherent in the concept of "information”. A common phenomenon in
combinatorial search theory is that while it is often straightforward to find an
optimal procedure searching for one object, it is immensely more difficult to
search optimally for two objects. Bellman and Gluss [10] studied the problem of
identifying two irregnlar coins in a set of n coins with a balance scale. They wrote:

A small amount of analysis discloses the enormous difference in complexity
between the one—coin and the two-coins problem.”

Tosi¢ [82] show that

[log, (3)1 < pa(n) < [logg <,}f)] + 1.

He also prove that an optimal algorithm can be constructed for all n's belonging
to the set

U ([3VE+ 11,2 34U [[3VE + 11,3+1)

Lately, this result were improved several times, see [11,7,86]. The results are
summerized in the following table:
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“ pa(n) = 2k + 1 | po(n) =2k +2 I ”
(352 4+1],2-3%] [[[3F6+ 17,35 Tosi¢ [82]
[[3%V2 + 17,20 - 35=2)|[[3% /6 + 1],4 3‘] Bognjak, Tosi¢ [11]
[35v/2 4 17,21 - 35=2)[[[3%/6 + 11,4 - 3F]]  Anping [7]
[[35v/2 + 17,64 - 35-3][[[3%/6 + 11,4 - 3] Tosi¢ [86]

— [ [—[—

In [44] Guy and Nowakowski ask: In which cases is yiz(n) = [logg (5)]+17 Is
n = 13 the first? The answer 1s: No. In what follows we give an al'fonfhm which
proves that s(13) = 4.

The first step is (A, B) where A = {z, 22, 23,24} and B = {&5, 26, w7, v5}.

(a) If A > B, the second step is ((1.C), where (1 = {xy, 29,210} and
(1'22{2132,:171],,1?13}. ~

(al) If ¢y > (s, the third step is ({zo}, {z10}). It is easy to check that,
independently of the answer, the space of solutions after this step will contain at
most three elements and one additional step will suffice to find counterfeit coins.

(a2) If ¢!y = (', than the third step is ({@1}, {x13}). After this step, the space
of solutions contains at most three elements, and again one additional weighing
is sufficient. :

(a3) The case 'y < (y is symmetrical to (al). Now, the third step is
({z11}, {z12})-

(b) If A = B, the second step is (C's, Cy), where C3 = {ay, x5, 26, 2o, 210}
and Cyq = {xg, x7, s, 211, T12}.

(b1) If ('3 > (4, the third step is ({xs}, {xs}). The space of solutions after
this step will contain at most three elements and one additional step will suflice
to find counterfeit coins.

(b2) If C'y = Oy, than the third step is ({@1}, {x7}). After this step, the space
of solutions contains at most three elements, and again one additional weighing
is sufficient.

(b3) The case (1 < (5 1s symmetrical to (bl). Now, the third step is
({w7},{=zs}). O

The following conjecture in various forms can be found in several papers.

Conjecture.
n
pa(n) = logy (2>1-

There are many other variants in identifying two irregulars [1,17,23,62].
Forsythe, responding to [33], seems to be the firsth to ask the question using
a spring balance, i.e. a weighing device that will return the exact weight; see
also [72,76]. In [19] Christen investigates the case of 2 counterfeit coins but of
complementary weights.

Hwang [49] proposes and analyses many weighing schemes. While a balance
scheme provides information about the irregulares by comparing the weights of
two subsets of coins, the irregulars can be also detected by a spring scale which
provides information by weighing a subset of coins. Instead of talking about the
balance scale and the spring scale, the more general terms of the comparison—
type device and the test—type device can be used. Hwang [49] survey results
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from various models of the test—type device in identifying two irregulars (not
necessarily identical).

Aigner [2] studies the following natural generalization to graphs of model @
(Hwang [49]). :

Main Problem. (fiven a finite simple graph (i with vertex—set V and edge—
set I, and an unknown edge ¢ € . In order to find ¢ we choose a sequence
of test—sets A C V' where after every test we are told whether e has both end-
vertices in A, one end-vertex, or none. Find the minimum number ¢((7) of tests
required.

Since we perform a sequence of ternary tests, we have the usual information—
theoretic lower bound for ¢((7):

o((7) = [log3q], ¢ =|F|

The following two particular cases of main problem have received particular
attention [].

Problem 1. Given a finite set S with |S| = n. We know that there are
precisely two defective elements x*, y* € 5. In order to find the defective elements
we choose a sequence of test-sets A C S. At the end of every test A we receive
as answer how many defective elements A contains. Determine the minimum
number of tests required to find " and y*.

Problem 2. Consider two disjoint sets S and T" with |S| = m and |T| = n.
It is known that either set contains precisely one defective element. We again
perform a sequence of tests A C S U T as just described. What is the minimum
number of tests required in this situation?

It is clear that the two problems mentioned above correspond to (f = K,
(complete graph) and (/' = K, ,, (complete bipartite graph).

As is common in search theory we distinguishe between sequential and prede-
termined procedures (see e.g. Ahlswede-Wegener [4] or Katona [54]). The case of
predetermined procedures has been thouroughly studied by many authors (see
Lindstrom [56,57], Cantor-Mills [16], Erdos-Renyi [30] and the bibliography in
[57)).

A binary variant of search problem in graph is the following. Again we per-
form a sequence of tests A C V' oon the given graph ¢+ = (V| E') with unknown
edge . After every test we now recaive as an answer whether ¢ has at least
one end-vertex i A or none. Again we are asked to find the minimum num-
her ¢((7) of tests required. Obviously, ¢((/) < ¢((+) for any graph ¢/, and the
information-theoretic lower bound is [log ¢|:

c((7) > [logql, q=|E|

A graph (¢ = (V, E) with at least two edges is called optimal (2-optumal) if
e((7) (e((7)) achieves the information—theoretic lower bound.

Aigner [2] showed that (a) any forest with maximum degree < 2 is optimal,
and (b) a eycle €, (n > 3) is optimal iff n 1s not a power of 3.

Aigner [2] proved that any forest is 2-optimal. Tosic and Masulovic [86]
proved that any planar graph is 2-optimal.
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4 Many Counterfeit Coins

The case m = 3 was the subject of a problem discussed by Collings [25]. Tosié
[83] proved that for n = 3¥, n = 3% 4 3*-1 and n = 2- 3%,

[logs (2)] < ps(n) < [logs (Z)] + L.

In [12] Bosnjak proved that
p21(3%,2-35 ) <3k—1, k>1,

and for each natural n,
pa(n) < [logs (T;)] +1.

It 1s easy to see that for some natural numbers the information—theoretical
lower bound cannot be achieved. For example, [logg (530)] = [log5(19600)] = 9,
but 1t is not difficult to verify that ps(50) = 10.

For m = 4, it is known that pu4(3¥) < 4k — 1 (Guy, Nowakowski [43]),
pa(3% 4 35-1) < 4k (Tosi¢ [84]), and puq(2 - 3F) < 4k + 2 (Tosié [84]). For some
natural numbers, the information—theoretical lower bound cannot be achieved.
For example, p4(8) = 5; although (Z) = 70 < 3%, it is not possible to make a
weighing among 8 coins with 4 counterfeit each of whose outcomes leave less than
26 possibilities and while 26 < 32, they cannot be separated by three weighings.

If m =5, it is known that us(3%) < 5k (Guy, Nowakowski [43]), pus(2 - 3%) <
bk + 1 (Tosic [85]).

Pyber [68] showed that

tm(n) < [logg (:)] + 15m.

The constant 15m can be much improved. The guess of Pyber is that

n

Hm(n) > [logs ( )] + em for some € > 0.

m

Some interesting connections between counterfeit coins problem and many
other combinatorial problems are established in [5] and some other papers given
at the and of this article.

References
1. Aigner, M., Combinatorial Search, Wiley — Teubner, New York, 1988.
2. Aigner, M., Search Problems on Graphs, Discrete Appl. Math. 14(1986)215-230.
3. Aigner, M., Schughart, M., Determining Defectives in a Linear Order, J. Statist.

Plann. Inf., 12(1985)359—368.
4. Ahlswede, Wegener, 1., Suchprobleme, Teubner, Stuttgart, 1979.



o

6.

ON TWO COUNTERFEIT COINS CONJECTURE I-13

. Alon, N., Kozlov, D. N., Vu, V. H., The Geometry of Coin—Weighing Problems,

Proceedings of 37th Annual Symposium on Foundations of Computer Science,
October 14-16, 1996, Burlington, Vermont, 524-532.

Andreae, T., A Ternary Search Problem on Graphs, Discrete Appl. Math.
23(1989)1-10.

. Anping, L., On the Conjecture of two Counterfeit Coins, Discrete Math.

133(1994)301-306.

ApSimon, H., Mathematical Byways in Ayling, Beeling and Ceiling, Oxford Uni-
versity Press, 1984,

Bellman, R., Dynamic Programming, Princeton Univ. Press, Princeton, 1957.
Bellman. R., Gluss, B., On Various Versions of the Defective Cloin Problem, Infor-
mation and Control 4(1961)118-131.

Bosujak, [., Tosi¢, R., Some New Results Concerning T'wo Counterfeit Coins, Univ.
u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat. 22, 1(1992)133-140.
Bosnjak, I., Some New Results Concerning T'hree Counterfeit Cooins, Discrete Appl.
Math. 48(1994)81-85.

Braun, 1., The Counterfeiters of Lower Slobbovia, Amer. Math. Monthly
6G1(1954)472-473. [But see corrections by Carlitz and Selfridge, 62(1955)40-41.]

. Cairns, S., Balance Scale Sorting, Paper P-736.
. Clairns, S., Balance Scale Sorting, Amer. Math., Monthly 70(1963)136-148.
. Cantor, D. G, Mills, W, ., Determining a Subset from Certain Combinatorial

Properties, Canad. J. Math. 18(1966)42-48.

. Chang, Gi., Hwang, I"., Lin, S.. Testing with T'wo Defectives, Discrete Appl. Math,.

A(1982)97-102.

. Chang, G. )., Hwang, I'. K., A Group Testing Problem on T'wo Disjoint Sets, SIAM

J. Algebraie Discrete Methods 2(1981)35-38.

. Christen, €., Optimal Detection of Two Complementary Coins, SIAM 1. Alg. Dis-

crete Methods, 4(1982)97 102,

200 Christen, (.. Search Problems: One, Two or Many Rounds, Discrete Math,

136G(1994)39-51.

. Christen, ., Adaptive Versus Non- Adaptive Quantitative Detection, in: 3rd SIAM

Conf. on Discrete Mathematics, Clemson, 1986,

Christen, €., A Fibonaccian Algorithm for the Detection of Two Elements, Publ.
341, Dépt. d'TRO, Universit¢ de Montréal, Montréal, 1980,

Christen, (., Hwang, F. K., Detection of a Defective Coin with Partial Weight
Information, Amer. Math. Monthly 91(1984)173-179.

24. Chen, P. D.. Hu, X. D, Hwang, F. K., A New Competitive Algorithm for the

Counterfeit Coin Problem, Information Processing Letters 51(1994)213-218.

. Collings, S. N. (editor), Puzzle Corner, Bull. Inst. Math. Appl. 20(1984), p. 94,

Puzzle number 79, Unbalanced Coins 11; p. 126, Solution; p. 153, Puzzle number
81, A Conlorless Corollary: pp. 184-185, Solution.

Descartes, B., The Twelve Coin Problem, Eureka, 13(1950)7, 20.

Dorfman, R., The Detection of Defective Members of Large Population, Ann. of
Math. Statist. 14(1943)436-440,

Du, D., Hwang, F., Combinatorial Group Testing and its Applications, Applied
Math Series, World Scientific Publications, Singapore, 1993,

Dyson, F. 1., Note 1931 - The Problem of the Pennies, Math. Gaz., 30(1946)231
234,

Erdos, P., Rényi, A., On Two Problems of Information Theory, Publ. Hung. Acad.
Sci., 8(1963)241-254,



31.

32.

33.

34.

35.

36.

37.

38.

40,

41.

42.

43.

44.

46.

47.

48.

49.
50.

RaATko Tosié

Erdos, P., Frankl, P., Furedi, Z., Families of Finite Sets in which no Set is Covered
by the Union of Two Others, J. Combin. Theory Ser. A 33(1982)158-166.

Exrdos, P., Frankl, P., Furedi, Z., Families of Finite Sets in which no Set is Covered
by the Union of r Others, Israel J. Math.51(1985)79-89.

Eves, D., Problem E712 - The Extended Coin Problem, Amer. Math. Monthly
53(1946)156; Solutions, E. D. Schell and J. Rosenbaum, Amer. Math. Monthly
54(1947)46-48.

Fine, N. I., Problem 4203 — The Generalized Coin Problem, Amer. Math. Monthly
53(1946)278; Solution, 54(1947)489-491.

Fixx, J., More Games for the Superintelligent, Warner Books, New York, 1972, p.
88.

Fujimura, K., Hunter, J. A. H., There’s Always a Way, Recreational Math. Mag.,
6(1961)67; editorial solution, 7(1962)53.

Fujimura, K., Another Balance Scale Problem, Recreational Math. Mag.,
10(1962)34.

Fujimura, K., Another Balance Scale Problem, Recreational Math. Mag.,
11(1962)42.

. Gargano, L., Montuori, V., Setaro, (i., Vaccaro, U., An Improved Algorithm for

Quantitative Group Testing, Discrete Appl. Math. 36(1992)299-306.

Goodstein, R. L., Note 1845 — Find the Penny, Math. Gaz. 29(1945)227-229. [Er-
roneous solution, purporting to find dud among (3™ — 2n + 3)/2 coins.] Editorial
note, Note 1930 — Addendum 30(1946)231, gives correct solution.

Grossman, H. D., The Twelve—Coin Problem, Scripta Math., 11(1945)360-361.
Grossman, H. D., Ternary Epitaph on Coin Problem, Scripta Math., 14(1948)69-
71.

Guy, R. K., Nowakowski, R. J., ApSimon’s Mints Problem, Amer. Math. Monthly
101(1994)358-359.

Guy, R. K., Nowakowski, R. J.; Coin—Weighing Problems, Amer. Math. Monthly
102(1995)164-167.

5. Hammersley, J. M., A geometrical illustration of a principle of experimental direc-

tives, Phil. Mag. 39(1948)460-466.

Hao, F., The Optimal Procedures for Quantitative Group Testing, Discrete Appl.
Math. 26(1990)79-86.

Hendy, M., The Retrial of the Lower Slobbovian Counterfeiters, Amer. Math.
Monthly 87(1980)200-201. [But see 62(1955)40-41.]

Hu, X. D., Hwang, F. K., A Competitive Algorithm for the Counterfeit Coin Prob-
lem, to appear.

Hwang, F. K., A Tale of Two Coins, Amer. Math. Monthly 94(1987)121-129.
Hwang, F. K., Updating a Tale of Two Coins, in: Capobianco, Guan, Hsn and
Tian, eds., Graph Theory and its Applications: East and West, New York Acad.
Sci., (1989)259-265.

. Hwang, F. K., Sos, V., Non—Adaptive Hypergeometric Group Testing, Studia Sci.

Math. Hung. 22(1987)257-263.

2. Itkin, K., A generalization of the Twelve-Coin Problem, Scripta Math.,

14(1948)67-68.

. Karapetoff, V., The Nine Coin Problem and the Mathematics of Sorting, Scripta

Math., 11(1945)186-187.

. Katona . O. H., Combinatorial Search Problems, A Survey of Combinatorial

Theory, ed. J. N. Srivastava, North Holland, 1973, 285-308.



>N
o

ON TWO COUNTERFEIT COINS CONJECTURE I-15

Katona (i, O. H., Renyi and the Combinatorial Search Problems, Studia Sci. Math.
Hung. 26(1991)363-376.

Lindstrom, B., On a Combinatory Detection Problem |, Magyar Tud. Akad. Mat.
Kutato. Int. Kosl. 9(1964)195-207; MR 29:5750.

57. Lindstrom, B., On a Combinatory Detection Problem [I, Publ. Hung. Akad. Sci.
1(1966)353-361.

58. Lindstrom, B., On a Combinatorial Problem in Number Theory, Canad. Math
Bull. 8(1965)477-490.

59. Lindstrom, B., Determination of Two Vectors from the Sum, J. Combin. Theory
6(1969)402-407

60. Lindstrom, B., On By-Sequences of Vectors, J. Number Theory 4(1972)261-265.

61. Lin Teng-Sun, To Weigh 5 + 2n coins of T'wo Different Weights in 4 + n times, J.
Tianjin Univ., 1986 no. 4, 77-85.

62. Manvel, B., Counterfeit Coin Problems, Math. Magazine 50(1977)90-92.

63. Mead, D. Gi., The Average Number of Weighings to Locate a Counterfeit Coin,
IEEE Trans. Inf. Theory 25(1979)616-617.

64. Mood, A. M., On Hotelling’s Weighing Problem, Ann. Math. Statist., 17(1946)432
446,

65. Newbery, 5. V., The Penny Problem, Note 2342, Math. Gaz. 37(1953)130.

66. Pele, AL, Detecting a Counterfeit Coin with Unreliable Weighings, Ars Combin.
27(1989)181-192.

67. Pippenger, N., Sorting and Selecting in Rounds, SIAM J. Comput. 16(1985)1032
1038,

68. Pyber, L., How to Find Many Counterfeit Coins, Graphs Combin., 2(1986)173-177.

69. Raine. €. W., Another Approach to the Twelve-Coin Problem, Scripta Math.,
14(1948)66-67.

70. Rivest, R. L., Meyer, A. R., Kleitman, D. J., Winklmann, K., Spencer, J., Coping
with Errors in Binary Search Procedures, J. Comput. System. Sci. (1980)396-404,

71. Robertson, J. A., Those Twelve Coins Again, Scripta Math., 16(1950)111-115.

72. Mauldon, J. Gi., Problem 13023, Amer. Math. Monthly 90(1983)645. Various so-
lutions, 96(1989)254- 258,

73. Robbins, D. P., Problem 6224, Amer. Math. Monthly 85(1978); Partial solution, Z.
. Motteler and A. Nijenhuis, Determining Heavy and Light Balls by Weighings,
B8T(1980)828-829.

74. Schell, E. D., Problem E651 - Weighed and Found Wanting, Amer. Math. Monthly
52(1945)42. Solution, M. Dernham, 52(1945)397.

75. Schwartz, B. L., Letter: Truth About False Cloins, Math. Mag. 51(1978)254. [States
that Schell told Michael Goldberg in 1945 that he had originated the problem.]

76. Shapiro, H. S., Problem 1399 Counterfeit Cloins, Amer. Math. Monthly
67(1960)82. Solution, Nathan J. Fine, 67(1960)697 698,

77. Smith, €. A. B., The Counterfeit Coin Problem, Math. GGaz. 31(1947)31-39.

78. Sobel, M., Binomial and Hypergeometric Group Testing, Studia Sci. Hung.
3(1968)19-42,

79. Soderberg, S., Shapiro, H. 8., A Combinatory Detection Problem, Amer. Math.
Monthly 70(1963)1066-1070

80. Sterrett, A., On the detection of defective members of large populations, Ann.
Math. Stat. 28(1957)1033-1036.

81. Stewart, D. A., The Counterfeit Coin, Proposed in L. I. Graham, Ingenious Mathe-

matical Problems and Methods, Dover, 1959, pp. 37-38. Solutions, D). B. Parkinson



I-16 RATKO TO0SIC

and Lester H. Green, pp. 196-198. [Problem appeared in the (iraham Dial, October
1945.]

82. Tosié, R., Two Counterfeit Coins, Discrete Math., 46(1983)295-298.

83. Tosi¢, R., Three Counterfeit Coins, Rev. Res. Svi. Univ. Novi Sad, 15(1985)225—
233.

84. Tosi¢, R., Four Counterfeit Coins, Rev. Res. Svi. Univ. Novi Sad, 14(1984)99-108.

85. Tosié, R., Five Counterfeit Coins, J. Stat. Plan. Inf., 22(1989)197-202.

86. Tosi¢ R., On Two Counterfeit Coins Conjecture, unpublished.

87. Tosi¢ R., Masulovi¢ D., A Binary Search Problem on Graphs, Review of Research,
Univ. Novi Sad, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat. 24, 1(1994)231-243.

88. Unger, P., The Cutoff Point in Group Testing, Comm. Pure Appl. Math.
13(1960)49-54.

89. Winkelmann, K., An Improved Strategy for a Counterfeit Coin Problem, [EEE
Trans. Inf. Theory 28(1982)120-122.

90. Withington, L., Another Solution of the 12—-Coin Problem, Scripta Math.,
11(1945)361-363.

91. Yao, Y. C., Hwang, F. K., A Fundamental Monotonicity in Group Testing, STAM
J. Disc. Math., Vol. 1, 2(1988)256-259.

This article was processed using the IXTEX macro package with LLNCS style



PROCEEDINGS OF THE VIII CONFERENCE ON
Loaic AND COMPUTER SCIENCE /A 97
Novl SAD, YUGOSLAVIA, SEPTEMBER 1-4, 1997, ppP. 17-17

Homotopy in concurrent processes

Stefan Sokolowski

Institute of Computer Science, Polish Academy of Science
Abrahama 18, 81-825 Sopot, Poland
e-mail: S.Sokolowski@ipipan.gda.pl

Abstract. In theories of concurrent processes and in job scheduling there have
been many attempts to introduce tools originating from algebraic topology; no-
tably, homotopy or homology groups. Intuitively, fundamental (or first homo-
topy) group gives an account of the nature of “holes” in a topological space. In
the realm of processes, such holes may correspond to forbidden configurations;
e.g. where more than one process is within the same critical region.

However, a number of topological properties, technically necessary for the
construction of the fundamental group, have no counterparts, or only artificial
ones, in concurrent, processes. Therefore, the payout from the homotopy consid-
erations is rather limited.

I put forward to settle for homotopy cpo-s, which is much less than homotopy
groups. As will be shown, the transition from vectors of processes to their homo-
topy cpo-s is functorial, preserves information about the “holes” and abstracts
from inessential details. This renders the approach a potentially useful tool for
investigating concurrency.

In the talk, I will not assume any familiarity of the audience with algebraic
topology. I will explain motivations and will support the construction of homo-
topy cpo-s by examples.
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Abstract  The presented framework provides some logic programming
features in environment of traditional languages. Knowledge-based subsystem
in Prolog is attached to an engineering software system written in a
conventional  programming language (typically in C). Control of the
computational process of the latter component is supported by the knowledge-
based subsystem. In an attempt (i) to bring the environment of the
computational component together with the logic programming environment
and (ii) to increase the intelligence of it, an instantiation of variables is
registered also in the computational component. This contributes to an
autonomous control of the computational process. The extended engineering
software system represents now not only a user friendly environment, but also
an environment with an active and intelligent support of the user. Several
practical applications were developed based on this framework. Two of them
are reviewed in the paper.

1 Introduction

A Prolog-oriented knowledge-based support of engineering computations is studied in
the paper. Since most engineering computations are realized in a conventional
programming language (typically in C, for instance), it was necessary to solve the
problem of how the computational component (written in C, for example) should
cooperate with the supporting knowledge-based component, completed in Prolog. The
developed framework solves this problem [1]. A collection of built-in tools [7]
facilitates bilateral transfers of both data and control, introducing logic programming
features to computational component.

P-1
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The nature of both these components is different. In an effort to decrease these
differences, as well as increase the intrinsic intelligence of the computational
component, some important properties of Prolog were partially modelled in the
environment of the conventional programming language (e.g., C language). The
system can distinguish between instantiated and non-instantiated variables, for
instance. So, a built-in selective mechanism can recognize potentially feasible
procedures of the computational component at a given moment. In the next step, this
selective mechanism compares all these potential candidates and selects the optimal one
according to a given goal and several constraints. Since this decision-making process is
substantially supported by the Prolog-oriented knowledge-based component, the
decisions can be made mostly autonomously by the system. This is a typical feature of
Prolog, and therefore, once it is modelled in the computational component and this
component is supported by Prolog-oriented knowledge-based component, it can
significantly contribute to a fundamental intelligence of the system.

2 Prolog-oriented support an selective mechanism

The task of the selective mechanism is to find a feasible and preferably opftimum routine
for a given goal, under given criteria and constraints. The principle of the mechanism
is based on the inference process of knowledge-based systems. There are two steps used
by the selective mechanism: Feasibility test and Selection.

Feasibility test.
Feasibility of the routines is tested and the feasible routines are inserted into the
Conflict set for the time being. During the feasibility test, each input parameter of
the tested routines is checked to determine whether an input value is known at that
moment. A routine is feasible only if all input values have been defined and hence
are instantiated in a given moment of computation.

Selection.

If the number of potential candidates in the Conflict set is two or higher, the
optimum feasible routine of the Conflict set is selected according to the given
selective conditions. These conditions are composed from the criteria and
constraints (given by a user or left as default conditions). Maximizing the accuracy,
or an upper limit of the machine time, can be chosen as conditions, for instance.
During the selection the corresponding attributes of potential routines are compared
with the given selective conditions and the best routine is chosen. The learning
ability, employed by a case-based reasoning process [4], enables the utilization of
experience gained from previous cases.

3 Autonomous control of computing

The Prolog-like selective mechanism can autonomously control a computing process,
constructing an appropriate sequence of the called routines and other information
sources, according to a given goal. In order to check the feasibility of routines, it is
necessary to detect whether variables have already been instantiated; [1]. On the other
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hand, it also opens up the possibility to define invertible programs integrating routines
of different orientations [6].

Orientation

Let the routine » be given as r(q ;0 4y 0 4,): The routine » can communicate
with other objects by:

e explicit (i.e. formal) parameters q, q,, ..., q

e implicit parameters q .»q_,m =n, which are global variables used

ntl’ qn+2' .
as input, output, or input/output variables;

e function value, in the case where r is a function; for the purpose of the
orientation issue, the name of the function, , is incorporated among the
(output) parameters.

The routine » models the (oriented) relationship of these parameters. The use of
a parameter can be specified by its mode. There are three modes of parameters:
input, output, and input/output. An assignment of the mode to each parameter
defines the orientation O of this routine.

A Prolog predicate can usually correspond to several orientations. Such a predicate
covering more than one orientation is called invertible. However, routines in
conventional programming languages commonly are not invertible. One way to model
some invertible relations is as follows:

()

(i)

Collect several routines, modelling the same relationship among the same (or
almost the same) parameters. They mostly (but not necessarily) correspond to
different orientations.

Encapsulate this collection of similar routines in a family. The most significant
differences among these routines (also called members of the family) are usually
their orientations, but they can differ also in other properties (e.g. accuracy, used
algorithm, and others). For a given purpose, the selective mechanism can select
the appropriate member of the family, according to the needed orientation and
other factors. Thus, despite the fact that conventional languages do not support
invertibility, the invertible relationships are accomplished with the help of the
families (collecting and encapsulating routines of various orientations) which are
supported by the selective mechanism.

Two main features were mentioned above:

(a)

(b)

The sequence of proper routines is composed autonomously. This increases
substantially an intrinsic intelligence on a very general, domain-independent
level.

Similar routines, corresponding to different orientations, are encapsulated in the
family, modeling an invertible relationship. So, this Prolog-like feature is
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implanted in the environment of conventional programming languages. In
addition, this approach also enables the invertibility of arithmetical compu-
tations, which is not usually possible in Prolog, since this is restricted by the
built-in-predicate “is”.

4 Example

The features mentioned above are illustrated in the following application from
mechanical engineering,.

Individual girder

Suppose there exists an individual girder (Figure 1), with two defined relations:

Figure 1: Individual girder

(i) Let there be a family of routines, represented by the template

(i)

Jorce relation (f, a, b, I, r),

expressing a relationship among force f; reactions a, and b, and distances /, and »
of the individual girder. As mentioned previously, the family collects several
routines expressing the same relationship and among the same parameters,
however each of these routines can correspond to a different orientation. Each
needed orientation is represented by one or more member routines. For instance,
the call: force relation (F, a, b, L, R) means an orientation, which for a given
force F and both distances L, and R, will return both reactions @ and b as results
(lower-case identifiers indicate uninstantiated variables, capitals stand for
instantiated objects). A different orientation could be represented by the call:
Jforce relation (f; A, B, L, r ). It will return force fand right-hand distance r, for
given reactions 4, and B, and for left distance L. Since the selective mechanism
can choose the appropriate routine among all members of the family
(corresponding to various orientations), the above family is invertible.

Besides the relationship of forces and distances, also deformation of the strained
girder is defined. Let the
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deformation (I, E, G x F A BS,, Sy, | ¥)

be the routine expressing the girder deformation ¢ in the point defined by
distance x, £ is Young's modulus of elasticity, G is the shear modulus, / is the
section moment of inertia, S, and Sy are shifts of the supports (it can be caused by
a deformation of an underlying girder), other parameters have the same meaning
as above.

Set of girders

Both force relation and deformation were defined corresponding to the individual
beam only. With the help of the selective mechanism, these defined relationships also
represent a sufficient apparatus for a set of girders GG;, G,, (i3, and G, in Figure 2. For a
given force /. the deformation (depression) of the whole set should be calculated.

The software system uses the routine deformation and several orientations of the routine
Jorce relation (encapsulated in the family), defining deformation and forces of one
individual girder only. The system did not receive any knowledge about sequencing of
these routines for sets of girders. However, despite this fact, the presented mechanism
can solve the task autonomously and with only minimal domain-specific information.

Calculation
The following sequence was designed by the selective mechanism.

(G ), fr(Gy), fr(Gs), fr(Gy), def(Gs), def(Gy), def(G. ), def(G, )],

where, e.g., symbol fi((;; ) means the call:

force relation(f, ay, by, L;, P;)
and represents the calculation of the reactions a; and b, for the girder (7, . Similarly,
symbol def((;3) means call of the routine deformation for calculation of a local
depression on the girder (s,
This achieved result is consistent with our intuition: it is obvious that (1) force relation

firstly should be applied to the upper girder G,, then to G, and only then to the
remaining ones, to define all forces and reactions. (2) Only after that, routine

('}A' /\A /\0204
(¥ P W S . ¥

Figure 2: Set of girders



P-6 OTAKAR BABKA

deformation can be applied, but in the reverse sequence, bottom-up, because of super-
position of the depressions.

Recalculation

Invertibility can enable a simple recalculation. This recalculation is inevitable for an
optimization of the design: Assume that all reactions were calculated, but the real
maximum load weight of some actually used girder supports will probably be higher
than previously calculated (in order to use only standardized supports, the girders of the
same or next higher value will actually be used). Therefore, it would be suitable to
recalculate this task and the admissible value of force f, as well as new values of
deformations under these modified conditions. The modified task would need a
considerably modified sequence of the calculation. With the help of the selective
mechanism, the new sequence for recalculation is designed:

[ J7(G3), def(Gs), fr(G), def(Gy), fr(Ga), defi(Ga), fr(Gy), def(Gy) ].

Notice that a different orientation of force relation was used for the recalculation. The
correct routine was (automatically) chosen inside the force relation family.

Even a task as simple as the presented one can demonstrate that the selective
mechanism can support a user considerably. The task would at least require the user’s
basic knowledge of both mechanics and the software system (furthermore the user’s
time, energy, concentration, and others, if the user should “manually” call the correct
routines, in the correct order, and with the correct parameters). On the other hand, the
presented selective mechanism can autonomously control the computing process and
without any specific knowledge about sequencing. The mechanism needs only the
input/output mode of parameters of all routines and other sources of information.

S Implementation issue

The selective mechanism was implemented and applied in several versions. The choice
of programming language was influenced by the language of the application, however a
host environment of the C language was used predominantly for the implementation.

Implementing the presented concept, two issues are the most important: (i) how to
register whether a variable is instantiated and (ii) how to implement invertible routines.

Instantiated variables

It was mentioned that the test of feasibility is based on the check whether or not all
inputs are instantiated. This concept is very important for logic programming, but
commonly not used in conventional languages. Notice that the concept of instantiated
variables was adopted in a modified way for the purpose of the presented approach: the
instantiated variable can arbitrarily change its value. Nevertheless, the instantiated and
uninstantiated variables have to be distinguishable. How to recognise the instantiated
variables is a considerable problem, especially when the host environment of some
programming language is used. Several methods were used in an effort to solve this
problem.
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One of the methods is based on the principle that a variable can be instantiated
inside a procedure only. If this restriction is accepted, each variable returned by a
procedure as an output parameter is instantiated. The list of all variables is
maintained by each level of program, recording whether the variable was already
instantiated.

Another method indicates uninstantiated variables with the help of a special
value, which was specifically chosen for each type. This value is assigned to a
variable during the initialisation phase. The method could seem risky.
Nevertheless, for a sensibly chosen value, the risk of confusion is noticeably less
then 10 for the four byte word.

Also the tagged approach was studied, distinguishing the variable according to
an attached tag to the data structure.

In addition, pre-processing of the source code of routines can be combined with
the mentioned methods, especially the last one.

6 Conclusions

The presented concept is based mainly on the selective mechanism. Main features can
be summarised as follows:

Routines serving a similar purpose are grouped into families. All important
properties of routines are stored in the family shell.

The selective mechanism can choose the optimum routine in the family
automatically.

This mechanism can be used for automatic control of the calculation (sequencing
of routines),

The system can partially learn from its own history.

The issue of invertibility was introduced, supported by a selective mechanism.
With the help of the presented concept, a consistent, autonomous, friendly,
supportive and intelligent environment can be built for a user.

The concept can also contribute to reliability and robustness of software, (i)
preventing undefined input parameters of routines, and (ii) checking the
incorrectly designed output parameters that cannot return values (value
parameters).
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Abstract: This paper presents a new agent-oriented programming
language named LASS. LASS 15 aimed for agent-oriented programming in
multi-agent systems. It enables the programming using new, agent-oriented
concepts. Agents programmed with LASS can have deliberative properties
(plans, intentions) as well as the reactive ones (behaviors). Agent can
execute its plans and/or behaviors simultancously. It can communicate
with other agents. Some agents may be located in the same computer while
other agents m the system may be located on the other computers
connected with the Internet.

I Introduction

Multi-agent systems ([21]) are a new and promising arca in the field of distributed
artificial intelligence (DAI). as well as in the mainstrecam computer science. These
systems are compound of relatively autonomous and intelligent parts, called agents.

Agent-oriented  programming languages arc  programming languages
developed for the programming of agents. Agent-oriented programming (AOP) can
also be seen as a post-object-oriented paradigm.

An advantage of the usage of agents in software development instead of
objects stems from the primitives used for programming. AOP introduces new
concepts such as mental categories, reactivity, pro-activeness, concurrent execution
inside and between agents. communication. meta-level reasoning. etc.

This paper presents an AOP language named LASS. Agent programmed
with LASS possesses intentions. beliefs and plans for its public and internal services.
Besides deliberative properties, agent specified with LASS can behave reactively as
well. LASS introduces the usage of hehaviors - programming primitives enabling
agent to react immediately when it is necessary. /LASS enables powerful
communication between agents which 1s based on agents' public services. Services
arc used similarly like remote procedure calls.

Most of the concepts in LASS are already seen in other programming
languages. However. the usage of all of them in one computer language is unique.

LASS is intended for the programming of static agents in multi-agent
system (MAS). but it can be also used as a general-purpose programming language.
In [9] the most appropriate domains for AOP are given. Nevertheless, in every
nontrivial software system. several crucial components may be identified whose

P-9
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cooperative or competitive work determines the system's behavior. These
components may be viewed as agents and the software system may be viewed as
MAS. The examples of such systems are given in [1], [3] and [4]. Once the software
system is identified as a MAS, LASS can be used for its implementation. Trivial
software systems may be also programmed with LASS, using only one agent.
However, the benefits that LASS provides are more evident when it is used for the
programming of more complex systems.

This paper is organized as follows. A definition and features of computer
agent and multi-agent system are given in the next section. The programming
language LASS is presented in the third section. The fourth section compares LASS
with other AOP languages. A conclusion is given in the last section.

2 Agents

Even if we restrict ourselves to computer science, a word 'agent' has many meanings.

In [21], agent is defined as:”... a hardware or (more usually) software based
computer system that enjoys the following properties:

e qutonomy: agents operate without the direct intervention of humans or others, and
have some kind of control over their actions and internal state;

e social_ability: agents interact with other agents (and possibly humans) via some
kind of agent-communication language;

e reactivity: agents perceive their environment (which may be the physical world, a
user via a graphical user interface, a collection of other agents, the Internet, or
perhaps all of these combined), and respond in a timely fashion to changes that occur
in it;

e pro-activeness: agents do not simply act in response to their environment, they are
able to exhibit goal-directed behavior by taking the initiative."

This definition does not specify the size of agents. They can be as big as
expert system is and as small as the part of an application interface is. Agent can be
static (permanently located in some computer) or mobile (moving across the
computer network, such as Internet). The amount of agent's intelligence is also not
specified. A collection of agent's definitions is given in [13].

Multi-agent system (MAS) is a system compound of at least two agents. An
attractive feature of MAS is that alternative approach with one central programmable
entity that controls and plans every action of every other entity is mostly much
harder to use in the system's development. Sometimes, centralized approach is
unachievable, while the MAS approach to system's development gives satisfying
results. An example that demonstrates this feature is given in [14]. Suppose that all
the citizens in some big city are without intelligence and are only able to execute the
commands of the only one intelligent person in the city. It is hardly possible for that
person to organize the arrival to work of every citizen in the city. If something goes
wrong and some important street becomes closed for the traffic, the system will crash
down. However, people do come to their work every day in every city. They do not
use high-level intelligence to accomplish this task.
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3 LASS

Every program written in LASS is intended for the specification of exactly one agent.
If there are n agents in MAS, n programs in LASS will be written.

The main part of the LASS's syntax and the description of the syntax
categories are as follows.

program =
'AGENT' agent name ';'
[known agents decl ';']
[fact types def ';']
[facts decl ';']
[public services decl ';']
[private services decl ';']
[behaviors decl ';']
[init beliefs ';']
[init intentions '
'"END' agent name

']

Program in  LASS
consists  of  ecight
optional parts. The
agents that will
communicate with the
agent are specified in
the first part. The
agent can ask services
from ecach of these
agents and it can be
asked for service by
cach one of them. If
the agent will not
communicate,
program will not contain this part.

The facts important to agent have to be declared. Before that. their types
have to be defined in the second part of the program.

Besides public services, agent can perform its own, private services as well.

Agent can possess behaviors. They monitor the agent's beliefs and use them
to activate or deactivate themselves.

At the beginning of its existence. agent can have initial beliefs about the
facts in its environment. If agent does not have belief about some fact, it believes that
fact has UNKNOWN value. It can also have initial intentions

intentions

plans
public services
private services

behaviors

beliefs about facts

fact types

Fig 1. Agent programmed with LASS

known_agents_decl =
'KNOWN' 'AGENT' agent decl {';' agent _decl)
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agent decl = agent name ':'

(internet adr | 'LOCAL')

There are two types of agents from the viewpoint of an agent: the agents located on
the same machine where the agent is located and the agents located on the remote
machines.

fact types def = 'FACT' 'TYPE' ftype def {';' ftype def}

1 4

ftype def = ftype name '=' ftype

ftype = prim type | record type | array type

Fact can be of a primitive type (standard type). a record or an array.

facts _decl = 'FACTS' fdecl (';' fdecl)
fdecl = fact names ':' ftypé_name
fact names = fname {',' fname}

Facts are used as variables in traditional languages. Besides user-defined facts, meta-

vel fa 3 are ¢ available. ation
level facts R T and crpuagy e also available. They contam informatior

about current intentions and active behaviors.

public services decl =
'"PUBLIC' 'SERVICES' serv decl {';' serv decl}

serv decl =

serv name '(' [ par decl {';' par decl} ] ")' ';'
("ALWAYS' | 'WHEN' bool expr ';')
'PLAN' body

'END' serv name

Service can contain parameters. Parameter can be of INPUT type or INTPUT-
OUTPUT type (VAR parameter). par decl represents the declaration of
parameter(s). It consists of parameters' names optionally preceded with the word
VAR and followed by the type of parameter(s). Service will not be performed if
bool exp in WHEN _ondition is not satisfied. Every service has its plan for its
execution.

bool expr =
"TRUE' |
'FALSE' |
"KNOWN' ' (' fname ')'
'"('" bool expr ')' |
test_serGice |
term relation term |
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'NOT' bool expr |
bool expr ('AND' | 'OR') bool expr

test service is a special type of private service that returns logical value
TRUE or FALSE after its exccution.

body = action {';' action)

action =
communicative action]|
service action |
loop action |
cond action |
modify fact action]
input output action

LASS supports standard constructs from procedural programming languages such as
loop_action. cond action. modify fact_action and input_output_action. In addition
LASS possesses special communicative primitives characteristic for the AOP
languages.

communicative action = ask service wait | ask service

ask service wait =
"SENDWAIT" serv name '(' [params] ')'
'TO' agent name
"REPORT' 'IN' rep fact name

ask service =
'SEND' serv name '(' [params] ')'
'TO' agent name
"STATUS' . 'IN' stat fact name

Communication is used when some service is asked from a local or remote agent.
Agent that asks other agent's service may stop the execution of the actions' sequence
while remolte service 1s being performed or it may continue to perform its actions.
Agent can have several intentions and/or behaviors active simultancously. If it uses
remote service with wait, only one plan/behavior will be paused. while other will
continue to execute. Report can have values: 'DONE' or 'DENIED'. Status of the
service can be: 'DENIED', 'EXECUTING' or 'DONE’.

service_action = service wait | service

Agent may execute its own service in two ways. The plan or behavior that invoked
the service may continue to execute simultancously with the new service or it may
wait until the service finish its execution. Like with remote services, service is
accompanicd with report (service wait)or status information (service).
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private services decl =
'"PRIVATE' 'SERVICES' pri serv decl {';' pri serv decl)

pri serv decl = test serv deel | serv deel
behaviors decl = 'BEHAVIORS' beh decl {';' beh decl})
beh decl =

bgh_name Yi!

[ "PRIORITY' integer ';' ]

'ACTIVE' 'WHILE' bool expr

'BEGIN' body 'END' beh name

Behavior's activation depends on the truth value of bool expr defined in
'"ACTIVE' '"WHILE' part of the declaration. When bool expr is true, the
behavior will be active. There can be several behaviors active at the same time.
However, only the active behaviors with the highest priority (lowest integer
number) are executed, while other active behaviors are paused. By default. behavior
has highest level priority.

init beliefs = 'BELIEFS' 'INITIALIZATION' body

body should be used for the assignment of values to various facts. Facts that are not
initialized have special value: UNKNOWN .

init intentions =
'INITIAL' 'INTENTIONS' intention {';' intention}

intention = serv name '(' [params] ')'
params = par {',' par}
Intentions are the list of services that have to be performed.

All actions specific to -all particular problem domains cannot be covered with any
AOP language. Therefore LASS does not contain actions which would be used in
services such as: "open the door", ‘"pick up the box" (robot's actions),
"send_email to boss", "check the web site", "get the headlines" (actions of the
personal digital assistant), etc.

In order to use LASS in every particular MAS domain, domain specific
services should be grouped in the special agent named SYSTEM. SYSTEM should be
able to provide its services to every local LASS agent. From the viewpoint of any
LASS agent, it would act like LASS agent. However, it would not be programmed
with LASS. It would provide domain specific actions represented as LASS services. It
would serve as an effector common to all local agents.

To every hardware component in MAS is attached exactly one SYSTEM
agent.
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4. Related Work

The first AOP language that uses mental categories is AGENTO ([16]).
Agents programmed in AGENTO have their initial beliefs and capabilities to perform
private and communicative actions. The main part of AGENTO program are the
commitment rules. Each commitment rule determines the new commitments and
other mental changes that will occur if particular message is received. Types of
messages are chosen from the speech acts theory (‘inform'. 'request', and 'unrequest').
Agents programmed with AGENTO are synchronized with a common clock. The
language is loosely coupled with modal temporal logic. This logic is used for the
specification of the language.

Unlike AGENTO. LASS is intended for practical usage. AGENT0's purpose
was (o introduce new concepts in an elegant manner. 2458 is not bound to any logic.
It uses some procedural constructs and its expressive power is greater than it is in
AGENTO. Agents' communication in LASS is inspired with remote procedure call.
while agents in AGENTO use speech acts. Communication with speech acts reminds
on human-like communication. but it is less cfficient and less convenient than the
communication used in 2ASS. Agents programmed in LASS do not use clocks and
references to time points to synchronize their actions. ask service wait can be
used for synchronization. While AGENTO possesses some clements of logic
programming. LASS is more oriented to procedural constructs.

PLACA (|17]. [18]) is the descendant of AGENTO. PLACA introduces
planning capabilities of agents. Agent in PLACA uses plans to achieve the desired
state of the world.

Agents in LASS also use plans, but plans cannot be generated at run-time as
they can be in PLACA. Whereas PLACA is descendant of AGENTO, its comparison
with LASS is similar to the comparison of AGENTO and LASS.

In Concurrent MetateM ([11]. [12]. [20]) MAS is specified with the logic.
The logic is modal and linear temporal. Specification of MAS is directly executed.

Concurrent MetateM is only in experimental stage and so far it has no
common features with LASS.

A different approach to MAS programming is proposed in [15]. In
HOMAGE, the language for agent specification has two levels. The lower level uses
objects of Java, Common Lisp and C++ instead of mental categories. Higher level
contains constructs for organization of objects from the lower level into agent's
program. Agents in HOMAGE communicate and received messages are handled
with rules similar to those in AGENTO and PLACA.

LASS does not allow the use of other languages. However, two types of
primitives in LASS can be identified. Primitives that are specific for AOP languages
(communicative actions, services, plans, intentions, behaviors, etc.) correspond to
higher level in HOMAGE. Primitives inherited from procedural languages
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(loop action, cond action, modify fact action,
input output action, ...)correspond to lower level in HOMAGE.

The AOP language with the greatest influence on our research is
AgentSpeak (]19]). Creators of AgentSpeak aimed to join object oriented
programming and MAS concepts such as: mental categories. reactive and proactive
properties, distribution over wide area network, real-time response, communication
with speech acts. concurrent execution of plans in and between agents and meta-level
reasoning.

LASS is very similar to AgentSpeak. The main difference is in
communication. We believe that LASS introduces more powerful communicative
primitives than those existing in languages enlisted above. Speech acts can be easily
implemented in LASS using services. Services act like remote procedure calls and
enable more efficient and simpler transfer of information.

None of the above languages possess such a powerful construct for agent's
reactivity such as behaviors. Behavioral approach to artificial intelligence 1is
developed at MIT. Its creator, R. Brooks ([5]. [7]. [8]). has developed many simple
robots that are able to perform complex tasks. Brooks proposes Subsumption
Architecture for the organization of behaviors. Behaviors in 24SS are organized in
the similar manner.

The combination of deliberative agent architecture and behaviors is
proposed in [10], for the programming of animated agents in computer animation.

- Most of the concepts used in LASS are already seen in other programming
languages. The significance of LASS is in the inclusion of all these concepts into one
programming language.

5. Conclusion

This paper presents a new programming language called LASS. LASS enables
programming using agent-oriented concepts. Usage of these concepts in computer
programming should make it more convenient and easier for wider population of
people.

' Besides other concepts, LASS provide the usage of behaviors. Behaviors can
be used for programming of agent's reactive features.

LASS and/or ideas on which LASS is based were conceptually applied in the
previous research of the authors. A multi-agent system in agricultural domain is
described in [1] and in [3]. Intelligent tutoring system compound of agents is
described in [4] and [6]. Personal digital assistant programmed in LASS is given in
[2].

LASS is not yet available for practical use. but authors are working on its
implementation. LASS is being implemented in Java. The implementation will be
done in three steps. The first step is aimed for the creation of the Java's objects, that
will be used for the implementation of some parts of LASS. This stage of LASY
implementation as well as the use of the created objects in implementation of three
MASs might be included in a master theses of the first author. In the second stage all
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remaining Java's objects that are necessary for L4585 implementation will be created.
Finally. in the third stage a translator from LASN to Java will be made.

L.1SS 1s suitable for agent-oriented software engineering. This approach to
software engineering has several advantages. It facilitates the usage of divide-and-
conquer strategy. It also enables the exploitation of parallelism. Software system can
be casily deployed on the wide area network and executed on several machines
simultancously. Whercas agents are encapsulated entities. the system behaves
robustly when the addition of new agents or the modification or removal of existing,
0nes oceurs.
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Abstract - The systems of automated reasoning are put into the base for
development of the descriptive languages for logical programming in this paper.
The determinate resolution system for automated theorem proving is especially put
into the base of prolog-like language, as the surrogate for the concept of negation
as definite failure. This logical complete deductive base is used for building a new
descriptive logical programming language. The language enables eliminating the
defects of PROLOG-system (the expansion concerning Horn clauses, escaping
negation Ireatment as definite failure), keeping the main properties of PROLOG-
language and possibilities of its expansions.

1. INTRODUCTION

The methods and techniques of automated reasoning have a wide variety of its
applications. The computer can be used to assist in various reasoning aspects, as
well as it has been used to assist in certain numerical aspects of mathematics. In this
sense, "automated reasoning is concerned with the discovery, formulation, and
implementation of concepts and procedures that permit the computer to be used as a
reasoning assistant", (Wos, [13]).

The developing of automated reasoning results into the developing of logic
programming languages. The advantages of changing one system for automated
reasoning by the other are described in this paper. The determinate resolution
system for automated theorem proving ADT (OL-resolution with marked literals) is
especially put into the base of prolog-like language, as the surrogate for the concept
of the negation as definite failure (SLDNF resolution) in PROLOG.

2. THE RULE OF ORDERED LINEAR RESOLUTION AS
THE FOUNDATION OF AUTOMATIC THEOREM PROVING

The most popular method for automatic theorem proving is the resolution method,
which is discovered by J. A. Robinson in 1965 ([1], [5], [14]). Since 1965., many
resolution forms and techniques are developed because the pure resolution rule has
been unable to handle complex problems, ([7]).

The general automatic method for determining if a theorem (conclusion) A follows
from a given set of premises (axioms) F:

Fl— A,
Each formula will be transformed to the clauses form. The clauses have the form:
L1 v L2 v .. v Lm, where Li are literals. The symbol for disjunction is: v .
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The literals Li have the form: P(ti,t2, ... , tn) or —P(t1,t2, ... , tn), where P is
predicate symbol, ti is term, — is negation. The literal P(t1,t2, ... , tn) is called
positive literal, the literal —P(t1,t2, ... , tn) is called negative literal.

Resolution method is a syntactic method of deduction. Reduction ad absurdum is in
the basis of resolution method:
F |— A iff Fu{-A} I—— contradiction .

Resolution rule will be applied on the set of clauses - axioms which was expanded
by negating the desired conclusion in clause form.

Ordered Linear (OL) resolution rule with marked literals ([6]) increases efficiency
and doesn't disturb completeness of pure resolution rule.

The generating process of OL-resolvent from central clause (d1) and auxiliary
clause (d2):

1. Redesignate variables (without common variables in the clauses).

2. Determine universal unificator ® for last literal of d1 and k-literal (k=1,2,...) of
d2 Gf it exists for some k, else it is impossible to generate OL-resolvent for
specification clauses).

3. Create resolvent with marked last literal in di® and add the rest of clause d2©
without k-literal (d1® and d2@® are clauses, which were formed by universal
unificator © applied on d1 and d2, respectively).

4. Eliminate identical non-marked literals and tautology examination (tautologies
are not memorized).

5. The Shortening Operation (delete all ending marked literals)

6. The Compressing Operation (delete the last non-marked literal, which is
complemented in relation to negation, with some marked literal for unificator A).

7. Repeat steps: 5 and 6 until the empty clause is got, or the Compressing Operation
is not applied on the last non-marked literal.

The rule of OL-resolution with marked literals is separated in two parts: in-
resolution and pre-resolution. The steps: 1 - 5 are represented in-resolution. The
steps: 6 - 7 are represented pre-resolution. Mid-resolvents are the products of in-
resolution and without their memorizing, the completeness of the method can be
lost. This modification of Ordered Linear resolution rule is served as the base for
development of the system for automatic theorem proving ADT.

3. THE SYSTEM FOR AUTOMATIC THEOREM PROVING ADT

ADT is a system for automatic theorem proving ([2]), which is implemented on PC
- computer by Pascal programming language. The system ADT is based on the
resolution rule. The rule of Ordered Linear Resolution with marked literals presents
the system base. The system is developed at Technical Faculty "Mihajlo Pupin" in
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Zrenjanin. ADT is projected for scientific - researching, teaching and practical
purpose.

The system ADT disposes three search strategies: breadth-first. depth-first and -
their combination. The first and the second strategy are common blind search
procedures. The third blind search procedure is constructed as their combination.
The system ADT permits comparisons of strategies. Numerously experiments with
ADT system are shown that depth-first strategy has the most efficiency. In depth-
first search. a new node is generated at the next level. from the one current, and
the search is continuing deeper and deeper in this way until it is forced to
backtracking,.

The main characteristics of ADT system:

- This system presents a complete logical deductive base: the clauses-sel is
unsatisfied (contradictory) iff the empty clause is generated by finite use of the
resolution rule. So. the proof of conclusion A is completed ( F - A) when the
empty clause is generated by the resolution from clauses-set F o {—A}.

- Besides the theoretical completeness of the system, it has the satisfying practical
cfficiency limited by the space-time computer resources.

- The first-order logic is the form of representation in ADT system (each formula is
transformed into the clause form). This deductive base has no restriction in Horn
clause (expansions concerning Horn clauses) and it allows the logical treatment of
negation (escaping negation treatment as a definite failure).

Therefore. the system of automated reasoning ADT is put into the base for
- development of the descriptive language for logic programming. This logical
complete deductive base is used for building a new descriptive logical programming
language.

4. THE CONCEPT OF LOGIC PROGRAMMING LANGUAGE
BASED ON ADT SYSTEM

Many logic programming languages have been implemented. but PROLOG is the
most popular language and useful for solving many problems.

PROLOG as a logic-oriented language ([4], [8]. [9], [11]) contains a resolution-
based theorem-prover (PROLOG-system). The theorem-prover in PROLOG appears
with the depth-first search approach. It uses the special resolution rule: SLDNF
(Linear resolution with Selection function for Definite clauses and Negation as
Failure).

The first-order predicate logic is the form of representation in PROLOG. PROLOG-
program is a set of sentences. Every sentence is finished by full stop. Program in
PROLOG consists of axioms (rules, facts) and a theorem to be proved (goal). The
axioms are restricted in Horn clauses form.
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Horn clauses ([9]), are clauses with at most one positive literal.

The rules have the form:

G :-T1, T2, ... , Tn.
where G is positive literal and Tj (j=1,2,...,n) are literals (positive or negative). The
symbol for conjunction is: , . The element G is presented head of the rule. The
elements Tj (j=1,2,...,n) are presented body of the rule. The separator :-
corresponds to implication (< ). The symbol for negation is: not.

The facts have the form:
G.
where G is positive literal.

The goals (questions) have the form:
?-T1, T2, ... , Tn.
where Ti (i=1,2,...,n) are literals.

Practically, programming in PROLOG is restrictive in a subset of first-order logic.
Horn clauses are represented the first defect of PROLOG. The concept of negation
as definite failure is represented the second defect of PROLOG.

An other approach to logic programming is implementation a new deductive
concept. The determinate system ADT for automated theorem proving is especially
put into the base of prolog-like language, as the surrogate for the concept of
negation as definite failure. This logical complete deductive base is used for building
a new descriptive logic programming language.

The first-order logic is the form of representation in ADT system, too. But, this
system- has not restriction in Horn clauses. It appears with clauses. The program on
logic language based on the ADT system is a set of sentences (clauses). There are
three kinds of sentences: rules, facts and goals. Every sentence is finished by full
stop.

The rules have the form:

G, G2, ... , Gm - T1, T2, ... , Tn.
where Gi (i=1,2,...,m) and Tj (=1,2,...,n) are literals (positive or negative). The
symbol for conjunction is: , . The elements Gi (i=1,2,...,m) are presented head of the
rule. The elements Tj (j=1,2,...,n) are presented body of the rule. The separator :-
corresponds to implication (< ). The symbol for negation is: ~ .

The facts have the form:
G.
where G is literal (positive or negative).
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The goals (questions) have the form:
?-Ti, T2, ..., Tn.
where Ti (i=1,2,...,n) are literals (positive or negative).

The rules and facts (axioms) are presented by auxiliary clauses. The goal (central
clause) is negating the theorem to be proved. Symbol ?- in goal is the substitution
for negation. The execution procedure is ADT system based on OL-resolution with
marked literals. This formulation enables eliminating the defects of PROLOG-
system.

The logic programming language PROLOG and the logic programming language
based on ADT system are compared.

PROLOG rules and facts do not allow the explicit statement of negative
information. But, the declarative syntax of the logic programming language based
on ADT system allows the expression of negative information in rules and facts.
Also, it is possible to construct the rule with more than one element.

Example 1.
The problem of trying to formulate sentence:
"Alice likes whatever Queen dislikes, and dislikes whatever Queen likes." into
PROLOG form, ([10]). The represcntations

likes(alice,X1) :- not likes(queen,X1).

not likes(alice,X1) :- likes(queen,X1).
are illegal in PROLOG because the second rule has a negation in head (it isn't Horn
clause). It is possible to solve the problem by trick - using a modified predicate
likes, and expressing the statement as:

likes(alice, X 1,true) :- likes(queen, X1, false).

likes(alice, X 1,false) :- likes(queen, X1, true).
The expansion concerning Horn clauses on the logic programming language based
on ADT system has the possibilities to express the statement as:

likes(alice,X1) :- ~ likes(queen,X1).

~ likes(alice,X1) :- likes(queen,X1).

PROLOG-system has the negation defect, ([7]). This defect is corrected in ADT
system. It can be illustrated by the following example.

Example 2.

Program in PROLOG:

vegetarian(tom).

vegetarian(ivan).

smoker(tom).

likes(ana,X1) :- not (smoker(X1)), vegetarian(X1).

PROLOG-system gives unconnected answers on the following questions:
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?7- likes(ana, X1).
no

7- likes(ana,ivan).
yes

If the last clause is now:
likes(ana,X1) :- vegetarian(X1), not (smoker(X1)).

PROLOG-system gives wrong answers on the following questions:
?- likes(ana, X1).

Xl1=ivan

?- likes(ana,ivan).

yes

These answers are incorrect because we have not data about Ivan and smoking. We
don't know is Ivan a smoker or not. The correct answer will be: "I don't know".

The program in logic programming language based on ADT system:
vegetarian(tom).

vegetarian(ivan).

smoker(tom).

likes(ana,X1) :- ~ smoker(X1), vegetarian(X1).

ADT-system gives answers on the following questions:
?7- likes(ana, X1).

Success=0

The proof isn't completed

7- likes(ana,ivan).

Success=0

The proof isn't completed

When the last clause is:

likes(ana,X1) :- vegetarian(X1), ~smoker(X1).

ADT system also gives the correct answers: "Success=0, the proof isn't
completed".

In fact, ADT system generates resolvents, but can not complete the proof with
depth-first strategy. In this system is escaped the treatment of negation as definite
failure.

The concept of logic programming language based on ADT system allows
eliminating of endless branches, recursion using and works with structures and
lists, as well as PROLOG. It is presented in some concrete examples, ([3]).
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S. CONCLUSION

Completeness and universality of the resolution method, as the base of ADT system,
enables it to be applied as the deductive base of prolog-like language. The
relationship between programming language based on ADT system and
programming language PROLOG are emphasized. The logic programming
language based on ADT system enables eliminating the defects of PROLOG-system
(the expansion concerning Horn clauses, escaping negation treatment as definite
failure, eliminating of endless branches), keeping the main properties of PROLOG-
language and possibilities of its expansions. ’
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Abstract. Star-free languages form an important subclass of regular
languages: they are the ones that can be obtained from the finite lan-
gunages by a finite number of applications of the operations of union,
complement and product. By Schiitzenberger’s famous theorem [7], a
regular language is star-free if and only if its syntactic monoid is ape-
riodic, or equivalently, if it is recognized by an aperiodic DFA. Jacques
Stern [8] proved that the problem of deciding whether a DFA is aperi-
odic is Co-NP-hard and belongs to PSPACE. Sang Cho and Dung T.
Huynh [2] strengthened Stern’s result by showing that this problem is in
fact PSPACE-complete. Here we prove that the problem of deciding if
a regular expression denotes a star-free language is PSPACE-complete.

1 Definitions and preliminary facts

The set of nonnegative integers is denoted N, and w stands for the set of positive
integers. For n € N, [n] denotes the set {1, ..., n}, so that [0] is another name
for the empty set 0,

Suppose that A and B are sets, A" C A B'C B, and p C A % B is a relation
from A to B. We write A'pB’" if there exist a € A" and b € B' with apb. The
image of A" under p is denoted A’p. When A" = {a} is a singleton, we write ap
instead of A'p.

We denote by A® the set of all finite words over A including the empty word
¢, while A% stands for A*\ {¢}. The set A“ is the collection of all infinite words
over A. The length of a finite word u € A* is denoted |u|, and the ith letter of a
finite or infinite word w € A* U A“ is denoted w;. Thus, any finite word u € A*
can be written as ujus . ..y, where each u; is an element of A.

P-27
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1.1 Finite automata

Most of our automata-theoretical notations and definitions are adopted from [3].
A (nondeterministic) finite automaton (NFA) is represented as a 5 S-tuple

=(Q, X, 7,1, F), where

— () 1s the finite set of states,
Y is the input alphabet,

-7 Y — P(Q) x Q) is the transition ﬂmchon
I € @ is the set of initial states,

— F C @ is the set of final states.

Note that for each input symbol ¢ € X, 7(o) is a binary relation on @, called
the relation induced by ¢ in the automaton A. We prefer the notation o4
to 7(). When u € £* is an input word, us denotes the relation induced by
u in A.

The automaton A can be visunalized as a directed graph with vertices ), and
edges labeled by input symbols in 2. Mohvated by thl\ 1)01nt of view, we shall
sometimes denote the relation ug by —s4 . Then q—»—A ¢ means that there is
a directed wu-labeled path from vertex ¢ to vertex ¢'.

The language L(A) recognized by A consists of those words u € X* for which
there exists a u-labeled path from some initial state to a final state, formally

L(A) = {u g T* 2

When A is understood, we sometimes omit the subscript in ——4 and 4.

We call A a deterministic finite automaton (DFA) if it has at most one
mitial state, and each relation o4 (¢ € Y¥) is a partial function @@ — Q. A
deterministic automaton is called complete if it has a unique initial state, and
each of 1ts input symbols induces a total function. The automaton A is called
a reset automaton if it has at most one initial state and each input symbol
o € Yinduces either the identity function or a partial constant function Q — ().
Note that each resef automaton is deterministic.

A state q of A is called acecessible (respectively, coaccessible) if there exists
some input word u € ¥ with [ 4 {q} (respectively, {q}ib-A F'). Note that
each initial state is accessible and each final state is coaccessible. A biaccessible
state is one which is both accessible and coaccessible. Two states ¢,¢" € @ are
called equivalent, denoted ¢ =4 ¢/, if

{¢}>a F <= {d}—>4F,

for all input words u € ¥*. Suppose that A is a DFA. Then A is called minimal
if all of its states are biaccessible, and it has no different equivalent states, and A
is called aperiodic if there exists an integer k > 0 such that (u¥) , = (uf*t!) ,,
for all w € £*. Observe that if A is a reset automaton then (u?), = (u?) 4,
and if A is a complete reset automaton then ug = (u?) 4, for all words u € £*

Thus, each reset automaton is an aperiodic DFA.
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Remark. 1t is well known (see [3]) that a deternumstlc automaton A is aperiodic

if and only if it satisfies the implication ¢ —>A q = ¢ =>4 q, for all states g,
(nonempty) input words u and integers k > 2.

1.2 Turing machines

We assume the reader is familiar with Turing machines and the basic concepts of
complexity theory, such as space-complexity and logspace-reducibility (see [1], for
example). Nevertheless, we briefly review some basic definitions and notations.

A deterministic Turing machine (DTM) with a single one-way infinite
tape is a system M = (Q, I, ¥, 6, q0,qs), where

~ () 1s the finite set of states,
~ ["1s the tape alphabet ('.onlaininp; the special “blank™ symbol b,
~ Y C I'is the input alphabet, b :
0:QxI—=QxTIx{=1,0,1}is t.lw partial transition function,
— ¢y € @ 1s the initial state,
-~ qy € @ 1s the final state.

We say the machine M is in the configuration (¢, 7, u) for a state ¢ € ().

€ w and infinite word w € " if in state ¢ it scans the ith tape cell
and the content of the tape is u. The language L(M) C L* recognized by M
consists of those input words u € X" for which M reaches the final configuration

integer i

(qp. 1,0*) when it is started from the initial configuration (qo, 1, ub").

The language class PSPACE consists of those languages which are recog-
nized by some Turing machine M having space-complexity p, for some poly-
nomial function p : N — N. Suppose L and L' are languages. In this paper,
L <oy L' stands for “L is logspace-reducible to L. The language L is called
PSPACE-hard with respect to logspace-reductions, written PSPACE <, L,
if every language in PSPACE is logspace-reducible to L. Lastly, L is called
PSPACE-complete with respect to logspace-reductions if 1, € PSPACE and
PSPACE <,,, L.

2 Results

We are interested in the computational complexity of the following decision
problems:

The intersection problem of reset antomata (IPR):
INPUT: A sequence Ay, ..., A, (n > 2) of reset automata with a common
input alphabet.
QUESTION: Does n”?l"] L(A;) # 0 hold?
2. Automaton star-freeness (ASF):
INPUT: A nondeterministic finite automaton A
QUESTION: Does A recognize a star-free language?
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3. Regular expression star-freeness (RSF):
INPUT: A regular expression £.
QUESTION: Does E denote a star-free language?

Assuming some efficient encoding of automata and regular expressions with
words over a fixed finite alphabet (see [4]), all these problems can be considered
as languages.

Our first lemma shows that for cach reset automaton A there exists a “short”
regular expression denoting the complement of the language recognized by A.
This fact plays a key role in proving that the problem RSF is PSPACE-hard.

Lemmal. Suppose that A = (Q, X, 7,1, F) is a resel automaton. Then lhere
exists a reqular expression I of length O(|Q] - |X]) such that L(E) = L(A).

Proof. We may assume that A has a unique initial state ¢o. Let

Xy={0€Z|Qoa={4}}

Y, ={o € Z|qoa={q}}

Zy = {0 € 2|goa =0}

B o— { kg 8 s if ¢ # qo
CE\SXYUY if g = g,

for all ¢ € ). Lastly, let

E=| |J B|u | Ezz
JEQ\F 4€qQ

One can show that v € L(E,) = qou C {¢} and qou = {¢} = wu € L(E,),
for all ¢ € Q, u € ¥*. Then L(F) = L(A) follows since the definition of E
expresses the fact that an input word v € % is rejected by the antomaton A
either if gou = {¢q} for some non-final state ¢, or qou = 0. O

Our main result is the following.

Theorem 2. The problems IPR, ASF and RSF are PSPACE-complete with
respect to logspace reductions.

Proof. We show
PSPACE <,y IPR <,y RSF <, ASF € PSPACE,

where IPR. is the complement of the problem IPR. It is easy to see that
RSF <, ASF: given a regular expression E, a logspace-bounded Turing ma-
chine can construct a nondelerministic automaton A such that L(E) = L(A).

Proof of PSPACE <,y IPR.: Suppose that L C X is a language in PSPACE.
Then also L € PSPACE, and thus there exist a polynomial function p : N — N
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and a deterministic Turing machine M = (Q, I". X', 6, qu, q5) of space-complexity

p with L(M) = L. Suppose that v € X" is an input word, for some n >
0. We construct a sequence S, P, Ay, ..., A, of reset. automata, where m =

max{p(n), '}, such that

we LM) <= LS) N LP)N (] L(A:) # 0. (1)
i€[m] -
et
= (Q, A s Aqo b ar )

b
P = ([m], A;rp, {1}, {1}),
and for each i € [m],
Ai = (I A mi, {(ub®)i ), {b}),
where
A={{g. k) ]a€Q, ke[m], yeT}

and the transition functions 75, 7p, 7y, ..., 7y, are delined as follows.
Suppose that a = (¢, k. y) is an element of ACI0(q, ) 1s undefined then

ts(a) = rp(a) = 1(a) = - = 1u(a) = 0,
and i d(q, ) s defined, say 8(q,v) = (1,9, 1), then

Ts(a) = {(q.r)}
[ Ak k+ 0} if k4t € [m],

p(a) = L0 k4t ),
) if k=i
= {(0.0) o I} if k # 1.
The intuition is that the antomata S, P Ay, ..., A, together “simulate” the

computation of M on the mput word u, such that & knows the current state of
M. P knows the position of the read-write head, and each A; (1 € [in]) knows
the content of the ith tape-cell. An input symbol (¢, k,7) € A corresponds to
the statement “the current state of M is ¢, the position of the read-write head
is k. and the content of the kth tape-cell is 47

It is casy to see that each one of 8. P A, ..., A, 18 a reset automaton. (In
fact they are even more restricted: for all input symbols @ € A, the relation
induced by a in each one of the automata S, P, Ay, ..., A, is either empty, or
a singleton, or the identity function.)

Proof of TPR <;,, RSF: Suppose that By, ..., B, (n > 2) are reset antomata,
say B, = (Q;, Y. 7, 1. Fy). First we construct a DFA € such that

ﬂ L(B,) = 0 <= L(C) is star-free, (2)

i€[n)
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(The very same construction was used by Cho and Huynh in [2].)

We may assume that each automaton B; has a unique initial state s;, so
that L(B;) # 0, for all i € [n]. Let p be the least prime number with p > n.
It is well known (see [5]) that p < 2n. For integers i € {n+ L,n+2,...,p}
let B; = (Qi, X, 7, {5}, F;) be the minimal DFA recognizing the language X*.
Then let C be the DFA depicted on Figure 1. See [2] for a proof of (2). Note that

Fig.1. The automaton C

C 1s a DFA with
L(C) = (L(By)#L(Bo)# - L(Bn)# (X" #)™")" .

It follows that a word v = v(W#v(M . vE=Dgt(®) (k> 0, v(© .. vk
X*) belongs to L(C) if and only if v'¥) = ¢, k is a multiple of p, and () €
L(B(imodp)+1), for all i < k with i mod p < n. The languages denoted by the
regular expressions

P =(SU#)ES

B=(z# | U @)

i€[p—1]
Fs=((Z#)P) | J(EH T E# ]| (Zus)
1€[n]
consist of those words v = v{O#v(D ... yF=Dty(*) for which

Lovk) £ e,
2. k is not a multiple of p,
3. v & L(B(imodp)+1) for some i < k with i mod p < n,

respectively. It follows that the regular expression E := Fy U FyU F3 denotes the
complement of the language L(C). (Note that F has star-height 2.) Then we see

L(E) is star-free <= L(C) is star-free <= (] L(Bi) = 0.
1€[n]
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Proof of ASF € PSPACE: Suppose that A = (), Y, 7, [, F') is an NFA. By
Schittzenberger’s theorem, L(A) is star-free if and only if the minimal DFA
recognizing L(.A) is aperiodic. Recall that the power automaton of A is the DFA
P(A) = (P(Q), X, ', {I}, F'), where

M= (S EPQ)|SNF £ 0},
{(5.57.4)| 5 € P(Q)},

for all ¢ € Y. The minimal DFA recognizing L(A) is obtained from P(A) by
deleting those states which are not biaccessible, and then identifying the equiv-
alent states. It follows that L(A) is star-free if and only if there exists some
input word v € Y accessible state S of P(A) and integer k& > 2 such that
S Apa) Slug ) oand S Ep(a) SUA.

It is easy to give a nondeterministic Turing machine Mg of linear space-
complexity for deciding if S %pa) S holds for two states 5.8 of P(A): if
exactly one of the two sets SO F and S0 F s empty then My halts, otherwise
it gnesses an input symbol @ € X and repeats the previous test for the sets

Il

(o)

S o= Soyg and S = Soq. By Saviteh’s theorem we obtain a deterministic
machine M of quadratic space-complexity which decides if two states of P(A)
are equivalent. Using M we can buld a nondetermimistic Turing machine M.,
ol quadratic space-complexity which decides 1 the language recognized by a
nondeterministic antomaton A = (Q, Y, 7,1, ') 1s not star-free. Mo works as
follows: first it successively gnesses the letters of an input word v € X" and
caleulates the relation uyg C @ x Q. ('U'his s done by storing only the relation
4 on the tape, which requires quadratic space. If the next letter guessed is o,
the next relation (ue) 4 is caleulated by taking the composition of the currently
stored relation uyg with o4, After each step Mo may decide to stop or continue
guessing the next letter.) Then it guesses an accessible state S C Q of the power
antomaton P(A). (Similarly as before, this is done by successively guessing the
letters of a word v with S = [vq.) In the end the determimistic machine M is
used 1o see if S %pay Sua and S 2pay S(ua)® hold for some k > 2,

I'hen again by Saviteh's theorem, we obtain a deterministic Turing machine
M of space-complexity O(n?) which decides if a nondeterministic automaton
accepls a star-free language 0

3 Conclusion and open problems

We have proved that the intersection problem of finite reset automata is com-
plete in PSPACE, which is a strengthening of Kozen's original result [6] in-
volving arbitrary deterministic automata. (It i1s also possible to show that re-
stricting the intersection problem to minimal reset automata does not decrease
its space-complexity.) Using this result we showed that the problem of decid-
ing whether a regular expression of star-height 2 denotes a star-free language
is PSPACE-complete. Similarly as in [2], one can show that the same problem
remains PSPACE-complete if we restrict it to regular expressions of star-height
2 over the two-element alphabet {0, 1}.
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These results suggest that the following questions may be interesting.

1. What is the complexity of deciding whether ;) L(Ai) # 0 holds for com-
plete reset automata Ay, ..., 4,7

2. What is the complexity of deciding whether a regular expression of star-
height 1 denotes a star-free language?

We conjecture that the answer for the first question is “NP-complete”. The
second question seems to be harder. However, it is our conjecture that restricting
the problem RSF to regular expressions of star-height 1 substantially decreases
its space-complexity. This would prove that, in some sense, our results are tight.
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Abstract. An approach is presented to implementation of discrete time
in Promela, a high level modelling language for specification of concur-
rent systems. Discrete time features are introduced on user level, using
only the existing language constructs and without any change in Spin,
its associated software package for antomated analysis and validation.
It is shown how the new time framework can be used for simulation
and validation of systems which correct functioning depends crucially on
timing.

1 Introduction

Promela is a high level modelling language for specification of concurrent sys-
tems. The models (programs) written in Promela are used as an input for Spin
software package for their automated simulation and validation.

Originally, Promela and Spin have been developed for analysis and validation
of communication protocols. The language syntax is derived form €, but also
nses the denotations for communications from Hoare’s CSP and control flow
statements based on Dijkstra’s guarded commands.

The full presentation of the language and the validator is beyond the scope
of this paper and we suggest [5] as a reference to the interested reader.

In Promela, the system components are modeled as processes that can com-
municate via channels either by buffered message exchanges or rendez-vous op-
erations, and also trough shared memory represented as global variables. The
execution of actions is considered asynchronous and interleaved, which means
that in every step only one enabled action is performed and without any addi-
tional assumptions of the relative speed of the process execution.

Giiven as an input a Promela model Spin can do random or interactive simu-
lations or to generate a ' program that performs a validation of the system by
scanning the state space.

P-35
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Xspin is a graphical interface for Spin. It provides an integrated windowing
environment for writing Promela models and carrying out virtually all Spin
functions in a user friendly manner. The outputs are displayed in various ways,
among which are Message Sequence Charts.

The time ordering of the actions in Promela is implicit and is given by the
sequential composition (concatenation) of statements, like in the ordinary proce-
dural programming languages. The time relations are only qualitative, meaning
that we only know that an action will eventually be executed after another, but
we do not know the exact time interval that will elapse between the two events.

This can be a significant shortcoming when the systems which correct func-
tioning closely depend on the timing parameters are to be simulated or verified
(e.g. communication protocols which have to deal with unreliable transport me-
dia, where the duration of timeout intervals could be of utmost importance).

To overcome this problem we extend Promela with the concept of discrete
time. In the discrete time concept used in this paper time is divided in slices
indexed by natural numbers. The actions are then framed into those slices, ob-
taining in that way a good quantitative estimation for the intervals between the
events belonging to different slices. Within a slice however, we can only have the
qualitative relation between the events, as in the time free case.

To the best of author’s knowledge, there are three other attempts ([9, 7, 2])
to introduce timing in Promela and Spin. The concept of [9] which uses real
(dense) time has certain problems with the urgent actions which impose limits
to its applications. The ongoing research of [7] is also based on real time, but it
is still in its early phase. The common carachteristic of those two approaches 1s
that, unlike our approach, they implement the time features on the level of Spin,
by changing its source code. The approach of [2] that uses discrete time and is
the most similar to the one presented here, suffered from the very big memory
requirements. It implements discrete time on user level too.

2 Implementation of Discrete Time in Promela

For simulation purposes discrete time can be implemented in a straightforward
way by introducing one global integer variable and a special process as in the
following segment

int TMaster;

proctype MasterClock()
{
do :: timeout->TMaster=TMaster+1; od

}

The variable TMaster is acting as a master clock on which all the processes are
then synchronized, by forcing them to wait for the next clock ticks to continue
their-execution.

For instance, we can implement a delay of one tick with the following se-
quence:
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T=TMaster; TMaster==T+1 -> other_statements

where T is a local integer variable. A process containing this sequence will hang
on the hoolean condition until TMaster is incremented by one. In that way the
execution of other_statements will he postponed for the next time slice.

The value of TMaster can be increased only by the process MasterClock,
which consists of an endless do loop. An instantiation of MasterClock, started
form init process, is run concurrently with the other processes of the system.

The key idea of the concept is the usage of timeout - a predefined Promela
statement that becomes true when no other statement within the system is
executable. Tts usage is allowed only in Clocks process.

By guarding the incrementation of the clock with timeout we ensure that
no process will proceed with an action from the next time slice until all the
other processes have executed all actions from the current time slice. (Within
the same time slice the actions can he interleaved in an arbitrary way, of course.)
Putting timeout at the beginning of cach iteration causes MasterClock to have
the least priority of all processes. Thus, it has to wait for all of them to finish
the execution of their actions for the current slice; and then it can increment
TMaster. This will trigger the hanging processes and in fact cause the system to
pass into a new time slice.

It is worth noting that timeout was introduced in Promela to make up the
lack of quantitative treatment of timing and it would have been useless in a
time setting. Instead. in our concept it is given one of the central roles. By
using timeout we continue to use the built-in Spin process scheduling and syn-
chronization. In that way we avoid the introduction of additional "housekeeping”
processes and variables, For instance, elements like process scheduler, semaphore
variables or some other synchronization mechanisms, might he needed. It s very
likely that we will lose in the clarity of the specifications and growth of the state
space if all of them are implemented on user level.

When using Xspin, one can add an appropriate printf statement in Master
Clock so that the changes of TMaster can be displayed on the message sequence
charts output.

Although it can be improved in several ways, the described straightforward
approach would still not be adequate for validation of the discrete time mod-
els. Even if we solve the problem of clock overflows, for instance, the virtually
unbounded increasing of the master-clock will inevitably lead to a state space
4-x|.|n>lnu.

The remedy is to use multiple clocks instead of just one master-clock. With
a careful managing of their operation we will be able to eliminate a lot of unnec-
essary transitions and shrink the state space significantly. This new approach is
given by the following suite of Promela macro definitions:

#define clock short
#define OFF (-1)
#define TIMEOUT (0)
#define set(x,y) (x=y)
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#define shut(x) set(x,0FF)

#define on(x) (x!=0FF)

#define tick(x) if :: on(x)—>x=x-1; :: else; fi
#tdefine tmout(x) (x==TIMEQOUT) /*timeout*/
#define delay(x,y) set(x,y); tmout(x);

to which we add the process Clocks, which is a modification of MasterClock
adapted to the new concepts. If we assume only two clocks in the model, sc and

rc, it could look like

proctype Clocks()

{
do
:: timeout -> atomic{tick(sc); tick(xc);}
1if
lon(sc) && 'on(rc) -> break;
else;
tiz
od;
}

The first macro defines clock as a synonym for the short type. We could have
as well used any other integer type - the choice of short is motivated merely by
practical reasons. The special constants OFF and TIMEOUT determine two special
states of the clock - the inactive and timeout state, respectively, that will be
described in a while. The next five definitions that follow reflect the work of
clocks as countdown timers. All clocks are shut off in the beginning of init
process by initializing them to OFF using shut. shut is only a variant of set
trough which a clock can be set to an arbitrary value. If the clock has been shut
off, setting it to a positive value will switch it on. Although all the clocks can
be set to by any process, they can be decreased only by execution of a tick in
the Clocks. Moreover, a clock value can be decreased only if it is not OFF, 1.e.
only if the clock is active. The tmout macro indicates a timeout, a moment of
timer expiration when it reaches the timeout value. delay can be regarded as
a “higher level” macro that uses set and tmout and is used to postpone the
execution of a statement for a fixed number of time slices.

There are some new features in Clocks that were not present in MasterClock.
Clocks is usually decreasing multiple clocks, instead of one and the clocks are
decremented only if they are not shut off. In case all clocks are switched off then
the loop is broken and this leads to a deadlock of the system. This feature was
necessary in the new time setting, because having timeout at the beginning of
the endless loop we loose the possibility to detect a deadlock. Now there is a
process that is always active - namely the Clocks itself! And this is of course
artificial, because we have introduced Clocks as a mere modelling convenience
- and it is not'a component of the original system. Allowing for loop to be broken,
we restore the important capability of deadlock detection.
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The usage of atomic sequence is to avoid the standard test and sel problem,
i.e. the interference of other processes which otherwise could have been activated
by the incrementation of some of the clocks. Such an unwanted awakening of
processes between two ticks in the Clocks process could lead to inconsistencies
in the synchronization.

3 Validation in Promela with Discrete Time

In this section we show how discrete time can be used for specification and valida-
tion of systems in Promela and Spin on the example of Parallel Acknowledgment
with Retransmission (PAR) protocol [8].

The choice of PAR was motivated by the fact that it is relatively simple
protocol for which almost complete model can be given in the paper, but it is
yet complex enough that its correct functioning depends on the duration of time
intervals in a nontrivial way. Another advantage of PAR is that it occurs often
in the literature on specification and verification (e.g. [10, 6]), so it is well-known
and also the results obtained with discrete time Promela can be checked against
the existing ones.

Informal Description of the Prolocol. PAR is one-way (simplex) data-link level
protocol intended to be used over unreliable transmission channels which may
corrupt or lose data. There are four components in our implementation a sender,
a reccwver, data lransmassivn channel K and acknowledgment transmission chan-
nel L.

The sender receives data from the upper level and sends them labelled with
a sequence number over the unreliable channel K. The sequence alternates be-
tween (0 and 1 - sometimes PAR is classified as a variant of Alternating Bit
Protocol. After that it waits for an acknowledgment, which should be received
via (urcliable) channel L. from the receiver before a new datum is transmitted. If
an acknowledgment does not occur after some period of time, the sender times
out and resends the old data. The receiver receives data from the channel K
and if the data are undamaged and labelled with the expected sequence number
it delivers them to the upper level and sends an acknowledgment trough the
channel L to the receiver.

Of crucial importance here is the duration of the time-out period which
should be longer than the sum of the delays trough the channels and message
processing time by the receiver, otherwise the premature timeout can cause the
loss of a frame.

A Model of PAR Protocol in Promela with Discrete Tiume. Because of the space
limitations we give only the incomplete listing of the model of PAR (without
Receiver process), which can hopefuly give a flavour of the way the new discrete
time framework can be used

/#discrete time macros+/
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#idefine clock short
/*...the same as in the text abovex*/
#define delay(x,y) set(x,y); tmout(x);

/*#PAR time parametersx/

#define dK 3 /*delay along the channel K/

#define dL 3 /*delay along the channel L*/

#define dR 1 /#delay along the channel Rx*/

#define To 9 /*timeout intervals*/

#define MAX 8 /*max number of different message contents#*/

/*channels*/
chan K = [1] of {byte, bit}
chan L = [1] of {bit}

/*clocking*/
clock sc, rc;

proctype Clocks()
{
/*...the sprocess is given in the text abovex/

}

proctype Sender(chan in, out)

{

byte mt; /* message data */

bit sn=0; /# sequence numberx*/

R_h: /#unbounded start delay - sending of a new message
can start in any time slicex/
do
:: delay(sc,1);
::omt = (mt+1)%MAX; break;
od;
S_f: delay(sc,dK); out'!mt,sn; /*sand and delay in channel K%/
set (sc,To-dK);
/*modelling peculiarity - the delay along the
channel K should be subtracted from the timeout period*/
W_s: do
o in?_ ->
qf
:: atomic{skip; delay(sc, 1); sn=1-sn; goto R_h;};
/*ack is O0K%/
:: atomic{printf("MSC: ACKerr\n'"); goto S_f};
fis
: tmout(sc) -> goto S_f; /*timeout*/
od;
¥

proctype.Receiver(chan in, out) { /*...not given ...*/}
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init { atomic{shut(sc); shut (rc);
run Clocks();
run Sender (L, K);
run Receiver(K, L); } }

Giiven as an input to the Spin validator (version 2.9.4) running on SPARC
station 5 with 64 MBytes of memory, the PAR model resulted in a resource

consumption shown i the table below.

tae parameters resource usage
dK[ dLl de Tol[transitions|memory [M B]I”P” time [sec]
3 3] 1] o 764 2.4 0.8
301 30 10} 90 2807 2.5 1.0
300] 300( 100} 900 23237 4.4 3.4
3000{3000(1000{9000 227537 21.7 25.9

Spin was verifying the safety properties (like absence of deadlock, and un-
specified receptions), and also the assertion that always the expected message
was received, by an exhaustive search of the state space.

It is interesting that the resource usage for small timing intervals, like the
ones in the first row in the table, is virtually the same as for the time free
maodel. With the growth of the time parameters the state space increases linearly.
Unfortunately, it is only a characteristics of simpler protocols like PAR. For more
complex protocols one should expect an exponential growth.

When given a PAR program with incorrect thme parameters - when To <
dK +dR +dL - Spin was able to find the scenario that leads to message loss. This
15 another useful feature, because, even for the systems for which the complete
validation of the model is unpossible, it can help in discovering sequences of
events that lead to an incorrect system behaviour (if they occur in the early
phase of the state space search, of course).

4 Conclusions and Future Work

We presented an implementation of discrete time in Promela and Spin, using
integer variables as stop-watches (clocks) to stamp the time slices. The core idea
was to use Promela timeout predefined statement as a mechanism for process
(1.e. clock) synchronization.

The new time language constructs were implemented as Promela macro def-
initions and their usage was demonstrated on the specification and validation of
PAR protocol.

The main future task will certainly be to test the approach and accumulate
experience by doing new verifications of systems known in the literature or some
newly developed industry cases which depend on timing parameters.
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So far we have applied the Discrete Time Promela on several concurrent
systems with various complexity among which we would like to emphasize the
Bounded Retransmission Protocol [3, 4], a "real-world” industry protocol used
by Phillips. Following the lines from [3] we have been able to obtain all the
verification results presented there. Moreover, our approach has an advantage
that Spin treats data more naturally than Uppaal, a tool for symbolic model-
checking of real-time systems, used in [3]. We live the full presentation of the
results for a forthcoming paper.

It would be very interesting to incorporate the ideas about data and time
abstraction of [2] in the existing models in order to obtain verifications that are
independent of the concrete parameter values, and to see how general is their
applicability. Another open question is to abstract the number of processes, so
that the verifications will not depend on this parameter too.

One of the main goals for further research will be to establish the relation
of discrete time extensions of Promela and Spin with ”more formal” formal
methods, like, for example, some version of timed Biichi automata with discrete
time or algebra for communicationg processes with descrete timing [1].
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Reniers, Sjouke Mauw and Bart Knaack.
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Abstract. We give a precise definition of evolving algebras as nondetermin-
istic, mathematical machines. All proofs in the paper are based on this defi-
nition. First we define constant propagation. We extend evolving algebras by
macros and define folding and nnfolding transformations. Next we introduce
a simple transformation to flatten transition rules. Finally a pass separation
transformation for evolving algebras is presented. It can be used to derive a
compiler and abstract machine from an interpreter. All transformations are
proven correct. Finally a comparison to other work is given.

1 Introduction

Evolving algebras (EvAs) have been proposed by Gurevich in [Gur91] and used by
Giurevich and others to give the operational semantics of languages like !, Modula-
2. Prolog and Occam. Borger and Rosenzweig’s proof of the correctness of the Warren
Abstract Machine is based on a slight variation of evolving algebras ([BR92]). An
evolving algebra may be tailored to the abstraction level necessary for the intended
apphication of the semantics, e.g. we might have a hierarchy of evalving algebras, each
being more concrete with respect to certain aspects of the semanties. In this paper we
only discuss syntactic-sugar free evolving algebras. As a result reading descriptions of
an EvA using this notation is harder than reading descriptions, which make extensive
use of syntactic-sugar. The advantage of considering the syntactic-sugar free EvAs
is clearly, that we have to deal with less constructs when we define EvAs and a
variety of transformations, as well as, when we prove operational equivalence and
other properties.

Syntactic-sugar free EvAs For our purposes here, we need a precise definition of
what an EvA is, and what a computation of an EvA looks like. An evolving algebra
W is a quadruple < 0, 5.7, 7, > where ! o is a signature, i.e. a finite set of function
names with associated arity, S 15 a nonempty set, called the superunwerse, T is a
finite set of transition rules and 7y : 0 — |, . ,(5™ — 5) is the intial interpretation
of functions in o, i.e. Ty maps every function name f of arity n to an interpretation
function Zo(f) : S™ — 5.

Transition rules are either function updates l'j(r,‘ )=t |, where f€a, n >0

is the arity of f and the {; are teris, or guarded updates F] b then 4'], where b 1s

" We will assume {true, false) C S.

P43
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a term and (' is a set of transition rules. A term ¢ is either of the form f(ty,...,1,),
where f € o,n > 0 is the arity of f and the ¢; are terms, or £ € 5.

A function update changes the interpretation of a function f for the arguments
th, ... t, to the value tf,, where ¢} is the value of the term ¢; in the current inter-
pretation. In a guarded update the updates in (" are only executed, if the guard b is
true in the current interpretation.

We will use the notation T % 7’ to indicate, that Z' is the result of applying the
transition rules of ¥ to Z. We will call this a step of the evolving algebra. Before we
can define a step of an EvA, we have to introduce some notation. First we define the
value of a term ¢ in an interpretation 7 and the evaluated form of a function update:
eval(f(#1wostn )y E) = I(f)eval(ty,T),...,eval(t,, L)) for n >0

eval(f(t1, ... 1,) = 10,Z) = f(eval(ty,T),...,eval(t,,T)) := eval(ty,Z) for n >0
Let T be a set of transition rules and Z be an interpretation, then those function
updates occurring in 7' can be executed, which either depend on guards evaluat-
ing to true in the interpretation or on no guard at all. We define updates(T,7) =
{eval(u,Z) : u € T' A is a function update} U updates(U7,Z) where {7 is the union
of all (', such that € T and eval(b,Z) = true.

There can be several conflicting function updates in updates(T,7), i.e. evaluated
function updates, which change the interpretation of a function for the same ar-
guments to different values. Let M be a set of evaluated function updates, then

M denotes the set, of all greatest subsets A of M, such that if in

A . . 4
A then there is no update m in A where g # t,. The relation —

is defined as follows: 7 % T/ < 30 € updates(T\Z) Ya € S*,s € S,f € ¢ :
5 of | f(a s|lel

I'(fa)=< i if [is an external function (for some i € .5)
Z(f)(a) otherwise

Note, that if updates(T,Z) 1s not a singleton, then from every set of contlicting

updates only one member i1s chosen nondeterministically.
A terminating computation of an evolving algebra ¥ is a sequence < Zy,Zy, ..., Zj, >,

such that Z, k. 7, ¥, LA T; and updates(T, Zy) = 0. Sometimes we will use

the notation Z 2 I to refer to a computation. Furthermore the set reach(Zy) is
w v v

defined as {Z,, : 3o — I, — ... — I, }.

Proof Method Let ¥ and W' be EvAs and F be a partial mapping of interpreta-
tions in ¥’ to those in W. Then V' is corvect wrt. W iff Z, = F(Z/)) and for every
terminating computation Zj, L 7 there is a terminating computation Z; % F(ZIy,).
Furthermore ¥ is complete wrt. ¥ iff for every terminating computation Z, LA Tx
there is a terminating computation Z; o 7). such that [, = F(Z,,). If &' is both

correct and complete wrt. ¥, then ¥/ and ¥ are operational equivalent. The proof
method is discussed in more detail in [BR92].

2 Transformations

Constant Propagation In evolving algebras functions are classified as internal
or external. External functions mimic input to the evolving algebra, i.e. how their
mterpretation changes at each step of the evolving algebra can not be foreseen.
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An internal function f s called static, if there is no function update to f in the
transition rules. We will extend this classification by allowing external functions to
be static or dynamic. We will call an external function static, if we know its value on
all arguments a priori. We actually turn an external function into an internal static
one. Now we will show, how a given EvA can be partially evaluated with respect
to its static functions. First we define the result of constant propagation w (1) of
aterm Lo If 0= f(ty, ... 1,) and [ is static then 7(0) = Z(f)(7(l1),...,7(1,)) else
a(t) = f(m(ty),....m(ty)). A term is defined to be static, if it does not contain any
dynamic function, i.e. £ is static ift £ € S or t = f(ly,...,0,) where n > 0 and all ;
and the function [ are static,

Let. (" be a set of transition rules. We construct the set 7((') of the transition
rules after constant propagation by induction. 7((") is also called the residual of

(' For all » € ("I ¥ = | rity, ... tw) = to | then I,f(vr(l.). L (L)) 1= w(ln)l e m(C'). If
E and w(b) & {lrue, false} then [if x(b) then =Dy | € 7(C). Finally, If
r= and 7(b) = true then 7(1) C w((").

Theroem: Let W =< o, S, T, Ty > and let. w(¥) denote the residual < o, S, 7(7T"), 7y >
of W 'Then #(W) is operationally equivalent to W,

Proof: After constant propagation in the resulting algebra the same updates are
done as before, we only changed the amonnt of work which is necessary to evaluate
terms. So the inital interpretation and the terminal interpretations are preserved
(correctness). furthermore for every terminating computation in ¥ there is a ter-
minating computation in (%) (completeness). The operational equivalence follows
imediately from the correctness and completeness, a

Macro Definitions Readability of an evolving algebra can be increased, if we de-
fine functions in terms of other functions. First we might think of macro defini-
tions as simple combinations of functions like snd = fst o rest implying Z(snd) =
L([st) o Z(rest). But this is not powerful enough. So we will consider macro defini-
tions of a different forme.g. mull twice(e, y) = mult(plus(e, x), plus(y, y)), which
is to imply Yooy € S Z(mult bwice) (e, y) = ZOmult)(Z(plus) (e, o), T(plus)(y, y)).
Let a be the set of all static functions in o, [ € o and £, be a first-order term consist
ing of function names in @ and x ..., 2, distinet variables, then a macro definition is
ol the form f(ay ... r,) = to. A macro definition is valid il eval(f(sy, .. .. s5,). 1) =
cval(ty[ey — sy, ..., 0p— 5,],7) for all s; € S and all 7 € reach(Zy).

We have several choices to restrict macros: no additional restrictions on the macros
(1), allow only non-recursive definitions (2) or none of the macros defined, may oceur
in the right hand side of a macro definition (3). We will address the implications of
these restrictions in the next section,

Unfolding Macros Let A be a set of macro defimtions. First we define the A-
unfolding of a term ¢, which we will write ast | A It = f(ty, ... t,)and (f(xy,....2y)
log) € Athent | A= I..[.rl — | A, .. en—i, | __\] elset | A=1

We will denote ] A1 A byt |"™ A The above mentioned restrictions on macro

N, e’

definitions have the f'~'»|i¢»\\'i||g implications with respect to the A-unfolding of a term:
1as 'H!Nhillll‘, that there 1s no n such that ¢ I" A=1 ’“+I A, e.g. A {f(.l] — _f(l'j}
there is an nosuch that £ [" A=t [|"t" Aort | A=11]"A
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Now we define the A-unfolding of a set of transition rules 7', which we will write as
T A LetreT: Ifr = [/m‘...,/,,,) = LOthenl_/’(f.l [ A, tn A=ty | A 1 eT | A If

r= and b | A& {true, false} then |7f bl Athen D] A [ €T | A Finally,
if r = and b | A =truethen D1 AeT | A

Theorem: Let W =< o, S5, T, Iy >, let A be a set of valid macro definitions and let
V| A denote the evolving algebra < o, 5,7 | A, Zg >. Then ¥ | A is operationally
equivalent to V.

Proof: In the unfolded algebra the same updates are done as hefore, we only changed
the structure of the terms, not their interpretation, i.e. the value they evaluate to.
The operational equivalence follows by the same argument used for the proof in the
previous section. 0O

Folding Macros As before let. A be a set of macro definitions. First we define
the A-folding of a term ¢, which we will write as t | A. Furthermore we will use
M to denote unification of first-order terms.If ¢ = [(¢;,...,1,) and {7 € {; | A then
Ftr, .. tn) €t | A Furthermore, if f(1, ..., t,) and ¢y are unifiable, i.e. f(¢1,...,1,)N
to is defined and g(xy,...,2,,) = ty € A then g(2y,....,Tm) € t | A, where the x;
are terms, such that f(t1,....t,) = lo[v1 — &1,....2m — Z,] Note, that in an
implementation we do not need an occurs check here, because we always unify a
variable free term and a term. Now we define the A-folding of a set of transition
rules 7', which we will write as T | A. Let » € T: If » = | f(t1, ..., %a) := %o | then

i, =G pUT €T | A where ] € ; | Aand T € T\ {r} | A If
r= and b | A& {true, false} then {} UT* eT | A, where
b*eb | AD e D | Aand T" € T\ {r} | A Note, that 7" | A is the set of all
possible foldings of the rules in 7.

Theorem: Let W =< a,5,T, I, >. Let A be a set of macro definitions and 7% € T' |
A<, 5, T, Ty > is operationally equivalent to W.

Proof: In the folded algebra the same updates are done as before, we only changed
the structure of the terms, not their interpretation, i.e. the value they evaluate to.
The operational equivalence follows by the same argument used for the proofs in the
previous sections. ' a
Clearly, in practice we are interested in one set of folded rules. Thus in an mmple-
mentation we would have to choose one 7" € T' | A. The choice can be based on
heuristics. Both, folding and unfolding transformations did only change the terms
occuring in rules. Next we will address transformations, which change the structure
of a set of rules.

Flattening Next we consider a simple transformation, which is helpful to prepare a
set of rules to apply other transformations. Let. (! be a set of rules, then we construct
the set, of flat rules F((') as follows. For each » € (! we have: If » =|if v, then D | € (!
then { s u € D is function update } U {| if bi&by then u | : Iif by then ul =
F(D)} € F(C). If v = | f(t1,..,ta) :=1t | then » € F(C). For this construction to
be semantics preserving, the interpretation of & has to be Va € S : Z(&)(a) =
true if a = (true, true)
{f(l,/sr otherwise
Note that in the definition of a computation of an EvA, we defined updates, such

that the rules of a guarded update are only considered, if the condition evaluates
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to frue. Flattening and its inverse transformation (“crushing”), can be used to re-
structure a set. of rules, e.g.: {if by then {uy, if by then us}, if by then uz} can be
transformed into {if by&bs then wy, if by then {uy, uyh}

Pass Separation Now we will classify dynamic functions as compile-time or run-
time functions. The value of a compile-time function is known, before that of a
run-time function, e.g.in an interpreter we might consider the program as compile-
time data and the input to the program as run-time data. The idea is now to classify
the rules: There is one group of rales, which depend only on compile-time functions
and the remaining rules depend on compile-time or run-time functions. In practice
we consider some of the external functions not to be known hefore run-time. Since
other dynamie functions can depend on these functions, we have to classify these
dynamic functions as run-time functions, too. In the literature on partial evaluation
(e.g. [JGSY3] ) this process is called binding-time analysis.

Classification of Functions: Let [ be the initial set of run-time functions and v =<
a, 5. T Ty >. Now we classify the functions in S as follows:

l. Let ! = R

2. Forall v € F(T): If r = and there 1s a function name ¢ € R,

such that g oceurs at least in one of the terms Ly, ... 0, then [ € RO r =

[i_[ bthen [(ty, ... ty) = Lo l:uul there s a function name g € R such that g occurs

al least in one of the terms b 4y b, then [ € R
S0 R = Rthen return K oelse set K= R and goto 2

Now the set of all compile-time functions is just (" = o — . Note, that all static
functions are classified as compile-time functions. The classification of functions
terminates in time O([a]), becanse in cach iteration the || decreases and |R'| < |a|.
Classafication of Rules: Next we have to classily rules as compile- or run-time roles:
re s a run-tone rule, if » = Iﬁ_;: »:_u,J and there oceurs at least one run-
tune function in one of the terms Ly, ... by, or il = [if 6 then D [ and there occurs at
least one run-time function in b or there is a ran-time rule in 7). Otherwise » is a
compile-time rule. This classification of rules terminates in timme O([77).

For the pass separation transformation. we require that the top-level conditions in

the run-tune rules are mutually cxelusive, ve. i | if by then g | ... [if ba then uy }
is the set of all run-time rules in 7" then we require: Tor all interpretations 7 €
reach(Zy) ccoal(be, T) = true = for all i # ko cval(b;, 1T) = false

An evolving algebras is separable Af the top-level conditions of the run-time rules are
mutually exclusive and consist of compile-time functions only, and if there oceurs
no term f(fy, ..., 4,) in any of the run-time rules, where [ is a dynamic compile-time
function and a run-time function oceurs o at least on of the 4;

Now we construct two evolving algebras: one which generates a program, and one
which executes this program. In the following we assume, that the usual non
destructive hist functions (cons, fst, rest reverse, nth islist) are static functions

the evolving algebra and that it s separable. For each run-time rule [if b then D [ in
T let i € S be a new instruction and add the following rules to 7, and T..:

('Ulll])illlﬁﬂlli if bthen D' U (prg = cons(cons(i, args) V"q)q eT,

execution: |if istist(pra)fst(fatiprg)) =i then /;"] e T,
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where DY is the set of compile-time rules in D, D7 is the set of run-time rules in 1)
and args = [ay, ..., da,,] is the list of all maximal subterms occurring in D, which
only consist of compile-time functions. D is obtained from DF by replacing every
occurrence of a; by nth(i+1, fst(prg)). Furthermore the islist function yields true, if
its argument is a non-empty list. Finally we have

if islist(prg) then prg = re.st(]n‘,(/)‘[ &
T, and all compile-time rules are elements of 7,.. Obviously splitting the rule set

T can be done in time O(|7T]). Now we define the following evolving algebras >

W, =< o U{prg}, 5,10, Z5 > where I5|, = Zo and I§(prg) = nil and ¥z, =<

o U{prgl, S, T., Z§ > where I§|, = I,|, and Z§(prg)() = Z;,(reverse)(ZS, (prg)())

We call the algebra executing the program Vze to make explicit, that it depends on

the terminal state of the compiling algebra. Taking the time complexities of all phases

of the pass separation into account, the transformation needs time O(max(|o|, [T]))

Theorem: 10 L, L Ly, 1s a compnutation i ¥, then m the compiling algebra ¥, there

exists a computation 7§ L Z,, and in the executing algebra Wz. there exists a
Vre

computation 7 UJ’T' A where ¢ < m. Furthermore we have 7 |ﬁ = Lo

Proof: First we note, that no dynamic compile-time functions ()(’rm mn T.. Let ' be

the set of compile-time rules in 7" and R be the set of run-time rules. We will prove

the five stronger properties

Lemma: The following properties hold: (1) Vj € {() = Zy|lg and (2) Vj €

{0,...,m} [;|( = Zj|c and (3) Vj € {0, .. I |(' = L,,| “ dnd 4) Fig,.yty <

MG < Uy V}E{U r[} _ZH|]1—Z |[,’ d,l]d |B— 77113

(1): Clearly Z7

of the rles i m f,..

(2): This part follows by induction on the steps of the computations:

) = 0: by definition we have: Z§j|, = Zy and as a consequence Z§|e = Lol

j -+ 1: In 7. are only updates to compile-time functions, because any rule contain-

ing an update to a run-time function is considered a run-time rule. As a conse-

4

= Ty |R‘ lwmn\e thero 18 no u])d(lte to a run-tune function in any

(uence, for all updates u to compile-time functions we have u € updates(T,7Z;) <
w € updates(T,. I7 ), because the conditions,which have to be true for adding u
to u;uluﬁ«.s(ﬂ,Ij) contain only compile-time functions, for which we know, that
Lile = IJ’«‘|(; by the mmduction hypothesis. By the definition of a computation step it
follows, that Zj11]¢ = 25 |

(*): Furthermore we know, that only the guard of one run-time rule can be true
(mutnally exclusive rules). In this case prg is updated:

I (prg)() = I (cons)([4, mm/(rtl,Z,-’), e eval(an, I9)], I (pry))-

By the induction hypothesis it follows, that eval(ay,Z}) = eval(ag,Z;)

(3): Since T, does not contain an update to a compile-time function, we have
Zi | = Iy, and by (1) we have I [¢ = T

(4): This part follows by induction on the steps of the computations:

7 = 0: By definition we have: Z§|, = Z5, |, and by (1) Z}, |r = Zo|r- Thus it follows,

that Zj|g = Zo|p and ip = 0. j+ 1 :
case 1: There is a computation step Z; 1 — Z;,,,, where 7; < 1544 and a top-level

condition of a run-time rule evaluates to true. Then this guard also evaluates to true

IV

W s o s ;
in the step Z° =T and [Z, dy, ..., d] is cons’ed to prg. The rules involved

Ly —1

> The restriction of a function f to a set A is defined as f|a = {(q, f(a)): 0 € A}.
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are:|if b then D | € 7‘, ITf b then D' U {prg = mms(wnnx(i,m’yxj,prg)}] eT.

and if islist(pry)&fst(fstiprg)) =1 then ok | € [‘,

Since in Wzo the value of prg has heen reversed and at each step prg = rest(prg)
is execnted, it is easy to see, that [i, @y, ..., dg] is the first element of prg in I;. As a
consequence we have: updates(l,, I}) = u.pdu.tr.s'(I:)""Z_;-')U {eval(prg := rest(prg))}
Since there is no other update to a run-time function in an intermediate step, we have
Zi | = I 4, —1 | and by the induction hypothesis, 7 |r = Ii|r. Now it follows, that
updates( ni, ;) = 11.7)([(:./('.9(I‘)""I,‘w_l UZ; [{prgy) and by (*) we know that ap =
coal(ay, [,f)+|_l) = eval(ag, l;,,,—1) and thus ”7""""""‘(1)“'1131+1—1 U Z; lpnit) =
updates(D.Z;, ). And by the definition of a computation step: IJ,"‘H g = Tisaa |5
case 2: There is no such computation step. Then j = ¢ and we conclude, that
Lylw = Tim|r and by the induction hypothesis 7, |y = T,k and thus I:/‘ll" = Tuln,
which s point () of the above lemima. O

An Example Next we will apply pass separation to an interpreter for simple arith-
metic expressions (£ — VAR | AINT | (12 OP [)). We assume, that in is a list
of syinbols representing an expression, e.g.in = (7, X 4,7(7,7,%,3,7)7, 7)) Fur-
thermore env maps variable names to valnes, e.p. env(X) = 3.
1f 1sli=t(in) then
{ if fst(in)="(" then in:=rest(in),
if isop(fst(in)) { opstack:=cons(fz=t(in),opstack), in:=rest(in) },
if isint(fst(in)) then { estack:=cons(fst(in),estack), in:=rest(in) },
if isvar(fst(in)) then { estack:=cons(env(fst(in)),estack), in:=rest(in) },
if fst(in)=")" then { opstack:=rest(opstack),
estack:=cons(apply (fst(opstack) ,snd(estack),
fst(estack)), rest(rest(estack))), in:=rest(in) } }

Using flattening the above transition rule can he converted into a set of transition
rules, which is more suitable for applying the pass separation transformation:

if islist(in) then in:=rest(in),

if islist(in) & isop(fst(in)) then opstack:=cons(fst(in),opstack),

if islist(in) isint(fst(in)) then estack:=conz(fst(in) , ,estack),

if islist(in)
if islist(in)
if islist(in)

isvar(fst(in)) then estack:=cons(env(fst(in)) ,estack),

(fst(in)=")") then opstack:=rest(opstack),

(f=t(in)=")" then estack:=cons (apply(fst(opstack) ,snd(estack),
fat(estack)), rest(rest(estack)))

7
&
&
&

We assume, that in is known at compile-time and env not before run-time and
classify funetions and rules as deseribed above. Now we can apply the pass separation
transformation” to generate a simple compiler
if 1slist(in) then
{ in:=rest(in),
if isop(fst(in)) then opstack:=cons(fst(in),opstack),
if isint(fst(in)) then prg:=cons(cons("pushint" fat(in)),prg),
if isvar(fst(in)) then prg:=cons(cons("pushvar",fst(in)),prg),
if fst(in)=")" then opstack:=rest(opstack),
if fst(in)=")" then prg:=cons(cons("app",fst(opstack)),prg) }

I'o increase readability we applied the “crushing™ transformation, see the conditions
iglist(in) and islist(prg)
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and an abstract target machine

if islist(prg) then
{ if fst(fst(prg))="pushint'" then estack:=cons(rest(fst(prg)),estack),
if fst(£st(prg))="pushvar" then estack:=cons(env(rest(fst(prg))),estack),
if fst(fst(prg))="app" then estack:=cons(apply(rest(fst(prg)),
snd(estack),fst(estack)), rest(rest(estack))),
prg := rest(prg) }

For example given the value in = ["(”,X,+,7(",7,%,3,”)”,”)"] at compile time,
the compiler will generate the abstract machine program: prg =[(pushvar X),
(pushint 7), (pushint 3), (app *), (app +) ]. The above example shows, that

pass separation can be used for semantics-directed compiler generation.

Implementation All transformations in this paper can be automated, but testing
the mutual exclusion of run-time rules is not even decidable. Nevertheless heuristics
can be used to decide, whether the conditions are mutually exclusive. Even checking
mutual exclusion at run-time is co-NP complete ([Gur91]).

3 Other Work

Iu [JS86] the authors use pass separation to generate a compiler and an abstract
machine for a functional langnage from a specification of an abstract interpreter.
The transformations are very sophisticated, but they are neither formally defined,

separation transformation of a very restricted class of term rewriting systems. From
an interpreter for a simple functional language, which he calls the CLS machine, he
derives a compiler and an abstract machine similar to the CAM ([CCM85]).

4 Conclusions

We defined evolving algebras in automata theoretic terms and used this definition as
a basis to define some transformations on evolving algebras and prove some essential
properties of these. The pass separation transformation can be used to split simple
interpreters into compilers and abstract machines.
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Abstract. This paper presents the relative completeness with respect to
some specified clones that we find to be of particular interest, considered
in [4,5,9].

1 Notation and Preliminaries

To support. the systematic design of biomolecular computing systems, an alge-
braic system called set logic is developed. As it is interesting to consider the
question: I one has all Boolean functions, how much does one need to have
functional completeness? So also it is natural extension to ask, if one has a spec-
ified subset of multiple-valued logic functions, how much does one need to have
functional completeness?

By N we denote the set of positive integers: {1,2,...}. For k,n € N let
E: = {0,1,..., k—1}, let I"(_"’ denote the set of all maps E}! — Fj, and let
Pr = UueN I,l‘"”
S /':_”) and [ satisties the identaty f(ry .., r,) &~ r;. Let 7' denote the i-th
projection of arity n. Let Il denote the set of all the projections over F).

I C Pas clone of operations on scl . (or clone for short) ff 11 € F and F
is closed with respect to superposition. All the clones on £y form a lattice which
shall be referred to as Lp. For I C P, (F)cr, stands for the clone generated by
F. F C Pyis complete iff (F)e = P,

Let o C B} be a h-ary relation and f € /':_“) We say that f preserves p iff
for each n h-tuples (ayy,....ayn), ooy (apy, ..., ) from p we have

- We say that [ is an i-th projection of artty n (1 < 1 < n) iff

(f((l|| ..... II,,])---»-f(”I/: ----- ”nh))‘:t’-

Pol o is the set of all f € P that preserve p. For ' C Py, Inv F' denotes the set
of all the relations being preserved by each f € F.

P-51
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Definition 1.1 Let (" € Ly be a clone and FF C Py,. F 1s complete relative Lo (!
(or C'=complete) iff (F U (e, = Pp.

Thus, relative completeness is a generalization of weak completeness, intro-
duced in [7]. On the other hand, relative completeness is a generalization of
(usual) completeness, because every complete set [ is [1g-complete.

The following easy theorem gives a necessary and sufficient condition for /7
to be C~complete. 1t is analogous to the Post’s completeness criterion.

Theorem 1.1 Lel (! be a clone and {My, ..., My} be the sel of all the mavimal
clones containing (':

{My,....Ms}={D € Ly : D is mazimal and D D ('}
F' C Py, 1s complete relative to C' off F\ M; # 0 for allie{l,...,s}. O

Therefore, the problem of determining whether a set I is relatively complete
reduces to determining all the maximal clones that coutain /7.
We shall introduce some special sets of relations:

R, the set of all bounded partial orders on E}
Ry the sef of selfdual relations, i.e. relations of the formn {(z,s(x)) : » € Fj}.
where s is a fixed point free permutation of primne order (i.e. s” = id for some
prime p)

the set of affine relations, i.e. relations of the form {(a,b, ¢, d) € E}}

R

caw b=

w

c* d}, where (Fy, *) is a p-elementary Abelian group (p prime)
R4 the set of all nontrivial equivalence relations on Iy,
Rs5 the set of all central relations on Ej,
Rg the set of all h-regular relations on Fj (h > 3)

&

Theorem 1.2 [6] A clone M is mazimal iff there is a ¢ € Ry U ... U Rg such
that M = Polp O

2 Relative Completeness With Respect to
Minimum and Complement

Let min(z, y) denote binary operation whose result is the least of x and y (where
v,y € B), and T = (k— 1) — 2. Let K = (min, )¢y, It 1s important to observe
that max(z, y) = min(%,y), which implies that max € K.

Lemma 2.1 T preserves no p € Ry.

Corollary 2.1 K\ Polp # ) for allp€ Ry. D

Lemma 2.2 min preserves no ¢ € Ro.

Corollary 2.2 K\ Polpo # 0 for all p € Ry. O
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Lemana 2.3 min preserves no o € Ry,
Corvollavy 2.3 N\ Polp £ 0 for all v € Ry. O
Lemma 2.4 Let p € Inv N0 Ry, et (a,b) € o and a < b (where “< " is usual
linear order on Dy: 0 < 1 < ... < k—=1). For each ¢ € E}. if a < ¢ < b then

(a.c) € p.

Lemma 2.5 Let p € Inv N 0 Ry Equivalenee classes of o are antervals with
respect Lo usual ordering on 19)..

Lemaa 2.6 [f [a,b] is an cquivalence class of some o € Inv K0 Ry, then [5;}

s also an (‘([‘Ili'l’lll(‘lll‘r' class uf 0.

Corvollary 2.4 Let p € Inv N0 Ry Equivalence classes of o are disjoint intervals
covering Iy arvanged in such a way that 51 is the center of symmetry of the
Jrgure formed by the anlervals.0

Lemma 2.7 If p € Ry ws an cquivalence velalvon such thal equivalence closses
of o arc duspornt antervals which cover Iy and which are arranged in such a way
that “=2 05 the conter of symmetry of the figure formed by the inlervals, then
o€ v A.O

Corvollary 2.5 card(Inv N N y) = 23l —

Lemma 2.8 Consuder o € In'ff_I L oEe v N iff (Vo € ) € p = T € 0)
Corollary 2.6 card(Inv A' N /\‘f,_l =2l _ 3

Corollary 2.7 If v € In'f.,“ and 1 = card(p), then t'nrtl(l’;,”)l 1Pol p) = 1" kk"
Lemma 2.9 [f o€ In't’h) and b > 2 then K\ Polp # 0.

Lemma 2.10 Lel o € Inv KN /\’f."").

(a) M e as a contral clement of o, then @ loo s central element of o
(by If a and b arve central clement of 0 and a < b then cvery element from the
tlerval [a,b] s a central element of p

Corollary 2.8 Let p € Inv K 1 [l'f-:‘ The sel of all the central elements of o 15
an alerval of the form [, €] which s a strict subset of E). O

Lemma 2,11 card(Inv A N Il",_-"')) =255 -
Lemma 2,12 max prescroes no p € 1

Corollary 2.9 N\ Polo # 0 for all p € Ky
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3 Relative Completeness With Respect to
Two Negations

Cousider the following two negations:

™ =x+1 (mod k)

L(k=1) — k—-lLz=FkF—1
N -~ L0, r#k—1

and the clone generated by these negations: I/ = (&~ z(F=1) ¢ .
Lemma 3.1 z™ preserves no ¢ € Ry.

Corollary 3.1 U\ Polp # 0, for all p € Ry. O

Lemma 3.2 z(s=1) preserves no p € Ro.

Corollary 3.2 U\ Polg # 0, for all p € Ry. O

Lemma 3.3 z(¢—1) preserves no p € Rs.

Corollary 3.3 U\ Polp # ), for all p € Ry. O

Lemma 3.4 For each ¢ € Ry there is f € {z~, 2%V} such that f does not
preserve o.

Corollary 3.4 [/ \ Polg # () for all p € R4. O
Lemma 3.5 27 preserves no p € Rs.
Corollary 3.5 U\ Polg # 0, for all p € Rs. O

Lemma 3.6 Consider an one-element h-regular family 7 = {@} and denote by
¢ the reqular relation determined by 7. x~ preserves g off @ is an equivalence
relation whose blocks are

{{0,h,....(r =D}, {Lh+1,...,(r=Dh+1},...,{h=1,2h=1,...,rh—1}}
where v =k/h.

Corollary 3.6 There exist al least card({h : h|k}\ {1, 2}) mazimal clones which
contain the clone U. O

Theorem 3.1 If k < 8 then there exist exactly car(!({h s hlk\{1,2}) mazimal
clones which contain the clone U. O

We conclude with an open problem that could clarify the obscurity of case
Rg: Is there a ¢ € Rg such that ar(e) > 1 and 2™ preserves p?
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4 Reiative Completeness With Respect to
. Transpositions

Consider the following transpositions ([2],theorem 8, p.54) on E):

., 86=10
gillz)=< 0, z2=1
xrootherwise.,

and the clone generated by them:

k=1

c= (U gi)en

i=1
Lemma 4.1 For cach o € Ry there s f € C such thal [ does nol preserve o.
Covollary 4.1 C\ Polp £ 0, forall o € Ry.
Lemma 4.2 For cach p € Ry there s [ € C such that [ does not preserve p.
Covollary 4.2 C\ Polp # 0, for all 0 € Ry,

Lemma 4.3 (a) If k >4 then for cach v € Ry there is [ € C such thal [ does
nol prescroe p.

(h) If ke 3.4} then g; preserves o for cach i€ {1, ... k—1}.

Covollary 4.3 (a) If k >4 then C\ Polo # 0, for all p € Ry.
(h) If ke {3.4} then C C Polp, for p € Ry.

Lemma 4.4 For cach o € Ry there s [ € C such that f does nol preserve p.
Corollary 4.4 C\ Polo # 0 for all v € Ry.
Lemma 4.5 For cach p € Ry there s [ € C such that [ does not preserve p.
Corollary 4.5 ( \.l’n| o # 0, forall o e Iy,

Lemma 4.6 (a) /"&r cach v € R, 2 < h < k there s [ € C such that f does not
prese LA 0.

(b) The k-ary relation p € Ry s preserved by g; for cachi € {1,....k—1}.

Corollary 4.6 (a) C\Polp # 0, for all p € Rs,2 < h < k.
(h) If v = It — Po1. (k=1) then C C Polp.

Theorvem 4.1 (a) If k > 4 then there s exactly 1 relatwe mazimal clone with
resped ttlo(C

(h) If ke {3.4} then there are exactly 2 relative mazimal clones with respect to
¢

Corollary 4.7 If k > 4 then F s relative complete with respect to C aff o

contains an essential function.
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5 Relative Completeness With Respect to
Two Unary Functions
Consider the following operations ([2],theorem 9, p.54), on E}:

r ,0<e<k=-3
gr) =< k=1, x=k—1
k=2 x2=k—2.

fla) = — L(mod k)
and the clone generated by them: € = ({g, f}) 1.
Lemma 5.1 f preserves no p € IRy
Corvollary 5.1 C\ Polp # 0. for allpe Ry. O
Lemma 5.2 For cach v € Ro there ws h € C such that h does nol preserve p.
Corollary 5.2 C\ Polp # 0, for all p € Ry. O

Lemma 5.3 (a) If k > 4 then g preserves no p € Ry.
(b) If k € {3,4} then {[f, g} preserve o € Rs.

Corollary 5.3 (a) If k > 4 then C\Polp # 0, for all p € Ry.
(b) If k € {3,4} then C C Polp, for p € Rs.
O

Lemma 5.4 For cach o € R4 there is h € {f, g} such that h does notl preserve
0.

Corollary 5.4 C\ Polp# 0 forallpe Ry. O
Lemma 5.5 f preserves no p € Rs.
Corollary 5.5 C\ Polp £ 0, for all p € Rs. O

Lemma 5.6 (a) For cach p € Rs,2 < h < k there is h € {f, g} such that h
does nol preserve o.
(b) The k-ary relation ¢ € Rg is preserved by {f, ¢}.

Corollary 5.6 (a) C\ Polp # 0, for all p € Rs,2 < h < k.
(b) If o= E‘,’: — Po1..(k=1) then C C Polp.

Theorem 5.1 (a) If k > 4 then there is ezactly | relative mazimal clone with
respect to C.

(b) If k € {3,4} then there are exactly 2 relative mazimal clones with respect to
C.

Corollary 5.7 If k > 4 then F 1s relative complete with respect to C off
conlains an essential function.
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Abstract

In this paper an approach to deductive database development with op-
timization is proposed. A logical (Prolog-like) interface to a relational
database is designed and implemented. Query evaluation is performed in
two steps: first, materialization of derived relations present in the query, by
the most ‘efficient method from a given set of methods; second, translation
of a Prolog-like query into an SQL statement over base relations, and its
execution by an SQL processor. Decision about the most efficient method
for materialization is made according to three criteria — number of suc-
cessful inferences, input/output cost and the number of simple steps in a
corresponding algorithm. A programming system is implemented in Visual
Basic environment that includes three compiling methods for derived rela-
tion materialization — Naive, Semi-Naive and Henschen-Naqvi, as well as a
component for their efficiency estimation. A classification of derived rela-
tions is proposed according to efficiency of specific methods. This syntactic
characterization of derived relations enables estimation, without prior ma-
terialization, of the most efficient evaluation method for four significant
classes of derived relations.

1 Introduction

Deductive databases provide for new facts to be deduced from other, explicitely
given facts. Such a deduction becomes necessary because of limitations of rela-
tional model formalisms - relational algebra and relational calculus, in formulat-
ing, by a single expression, different sets of data from a database.

For example, a result of a transitive closure operation of a relation cannot be
expressed by a single expression of the classical relational algebra or relational
calculus. Different approaches to increasing expressive power of manipulative
formalisms exist. Beside solutions offering nesting of a relational formalism into
a host language 2], a significant approach is based on extending structural - and
consequently manipulative parts of the model itself. This leads to a deductive
model (and deductive database systems).

From the proof theory as a first order theory point of view, a deductive
database consists of two components:

e Theory T whose axioms, besides general axioms that hold in the corre-
sponding theory for classical relational databases, include the following two
groups of axioms:

(1) Elementary facts, i.e., a set of clauses of the form P(cy,...,¢cn), corre-
sponding to a base table P in a relational database, and representing
an EDB (Extensional DataBase) part of a deductive database.

P-59
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(2) Deductive rules, i.e., a set of clauses of the form

Ri=Pyy Poyos s Lo

representing definition of the predicate R in terms of predicates Pj,
P, ..., P,. Deductive rules make an IDB (Intentional DataBase) part
of a deductive database.

o Integrity constraints set of formulas, IC.

An answer to a query W(zy,...,z,), where 21, ...z, are free variables in W,
is a set of tuples (cj,,...,¢;, ) such that T |= W(e;,, ..., ¢i, ). Deductive database
satisfies integrity constraints of IC iff for every formula ® € IC, T = ®.

Relations defined by both deductive rules and elementary facts are known as
derived relations. Recursive relations in deductive databases may be defined by
two deductive rules.

Problems and implementation of deductive databases have been principal re-
search interests for many researchers for last two decades [1], [3]. Basic research
tasks are design of efficient algorithms for recursive query evaluation, develop-
ment of logical interfaces to relational databases, efficiency analysis of algorithms
for query evaluation, etc.

This paper deals with a deductive database development through a Prolog-
like interface to a relational database system. Compiling methods are chosen
for evaluation and materialization of derived relations. A logical language is
designed for defining an IDB part of a deductive database, and the corresponding
language processor is implemented that analyses and translates derived relations
and queris, from the logical language into SQL. Optimization component based
on materialization and classification of derived relations is developed.

2 Recursive query evaluation methods and their
efficiency

A recursive query evaluation strategy is defined by a class of rules it is applicable
to, and by an algorithm for evaluation queries over such set of rules. If a strategy
does not change neither IDB nor a query, it is called a method. If a strategy,
prior to query evaluation by a method, performs a transformation of rules in
order to optimize query evaluation, it is called a rewriting rules system.

In this paper we will consider compiling methods only, i.e., Naive, Semi-Naive
and Henschen-Naqvi methods, applicable to linearly recursive range restricted
rules (ones whose right side contains all the variables from the left side). Naive
method is the simplest, and its algorithm, for a relation R and a query @ defined
by the following clauses (S is a base relation, c is a constant)

R(X,Y):=S(X,Y).
R(X,Y):-S(X,2),R(Z,Y).
Q(X) : —=R(c, X).
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keeps generating intermediate results representing unions of joins of the relation
S and a previous intermediate result, until it reaches its "fixpoint”.

Semi-Naive method is an improvement of the Naive method in that it cal-
culates, in every iteration, just new tuples, and avoids repeated calculations of
already calculated tuples.

Henschen-Naqvi method is quite complex, and in a special case represented
by the following clauses defining ”same level” relation and a query

R(X,Y):—u(X,XU),R(XU,YU),d(YU,Y).
R(X,Y): =-5(X,Y).
Q(X) : —=R(c, X).

it generates the answer to the query by calculating expression

{a}. R+ {a}.w.Rd+ {a}uu.Rdd+ ...+ {a}u".Rd" + ..,
thus calculating relation degrees ({a}.R is a set of all the y-s such that R(a,y)
holds).

Question of efficiency of a recursive query evaluation strategy is still an open
question. An approach to comparing strategies is presented in [1] and is based
on the following criteria: size of application domain, performace, and ease of
implementation. Performance is measured by the number of successful inferences.

In this paper three compiling methods are compared according to different
cost functions presented in section 4.

3 Derived relations and query definition language

Logical interface to a relational database is defined by the following syntax:
(1) <derived_relation> ::= <relation1> ":-” <relation2>{,<relation2>}?
(2) <query> ::= <relstion3>{,<relation3>}?
(3) <relationl> ::= <relation_name> (<argumentl>{ <argumentl>}!)
(4) <argumentl> ::= <variable>[:<attribute_name>]
(5) <attribute_name> = <letter>{<letter> | <digit>}
(6) <relation_.name> ::= <letter>{<letter> | <digit>}
(7) <variable> 1= <letter>
(8) <relation2> ::= <relation_name> (<argument2>{,<argument2>}')
(9) <argument2> = <variable> | '<letter>{<letter>}’
(10) <relation3> ::= <relation.name> (<argument3>{,<argument3>}')
(11) <argument3d> ::= <variable> | <variable>* | '<letter>{<letter>}’
Language processor translates derived relation or query definitions into SQL.
For example, the following definition of a derived relation R over a base relation
S(atl,at2)
R(X :at3,Y :atd) : =S(X,Y).
R(X :at3,Y :at4) : —=S(X,Z),R(Z,Y).
will be translated into two SELECT statements:

SELECT sl.atl as at3, sl.at2 as at4 SELECT sl.atl as at3, r2.at4 as at4
FROM S sl FROM S s1, R r2
WHERE sl.at2 = r2.at3
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Expressive power of the language is analogue to SQL SELECT-block with
SELECT, FROM and WHERE clauses, without nested subqueries or aggregate

functions.

4 Implementation

The programming system implemented in Visual Basic environment evaluates a
query against the deductive database by materializing derived relations partic-
ipating in it. When a derived relation definition is submitted, the system first
analyses it, and, if correct, translates it into an SQL statement. Then it applies
every method implemented to evaluate and materialize the relation and stores
costs of materialization for every method in a sistern catalog. The costs are cal-
culated according to defined criteria. Then materializad relations are dropped.

When a query definition is submitted, the system translates it into an SQL
statement and decides, based on the costs from the catalog, which method to
apply for materialization of every derived relation participating in the query.
After materialization has been done, the SQL statement obtained is submitted
to the Visual Basic SQL processor for execution.

Thus the system implemented basically consists of three coinponents:

1. derived relations and query evaluation methods — Naive (1.a.), Semi-Naive
(1.b.) and Henschen-Naqvi (1.c.), with cost functions evaluated;

2. interface language compiler and translator;

3. procedure for deciding which method is to be used for materialization of a
specific derived relation.

Cost functions for the methods implemented are based on the number of suc-
cessful inferences, number of input/output (I/O) pages from permanent storage,
and the number of Visual Basic operations. The I1/O cost is considered as the
principal criterion, the other two being corrective criteria.

Input/output (I/O) cost function first takes into account the number of I/O
operations performed in a single join operation.

Let us consider a derived relation definition

RZ—Rl,RQ,...,Rn.

Evaluation I/O cost for the relation R is the sum of 1/O costs of sequence of
Joins of the relations Ry,..., R,.

By analyzing the process of translating the derived relation R into an SQL
statement, the overall I/O cost for evaluation of the SQL statement corresponding
to the derived relation R is given by the expression:

Zi_number_of records(R;) * sR;/sp,

where sR; and sp are sizes in bytes of records of relations R; and a disk page,
respectively.
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Different methods will produce different 1/O costs since they generate inter-
mediate tables of different sizes.

Example Let EDB and IDB consist of the following relations:

parts(code, name) (base table)

structure(codel, code2) (base table)

samelevel (X, X) : —parts(X,Y).

samelevel(X,Y) : —structure(P, X), samelevel(P, Q), structure(Q,Y).

(code is an identifier of a part and name is its name, while codel is an identifier
of a part directly containing another part whose identifier is code2).

Figures 1-5 present system’s processing of the derived relation samelevel and
a query over it.

Queries against base relations alone are evaluated without any materialization
(figure 8).

5 Syntax characterization of some classes of de-
rived relations

By analyzing implementation of methods for derived relations evaluation, conclu-
sions may be drawn about the most efficient methods for some specific classes of
derived relations, from relations’ syntax alone. It means that, for those classes of
derived relations, optimization may be achieved at compile-time, without having
to materialize relations by all the methods implemented (in order to estimate the
best one).
Let us consider derived relations p defined by the following two clauses:
pP:=—ry,re,r3
P:—P1,P P2
Relations ry, ry,r3, p1, p2 may be derived, and classification of relations p is
based on the number of joins of the relation p with p; and ps.

1. First class: non-recursive derived relations (the second clause is absent).
Figure 7 presents an example of such a derived relation -

names(X,Y) : —parts(P, X), structure(P,Q), parts(Q,Y).

2. Second class: simply recursive derived relations, i.e., relations p whose
definition does not contain one of the relations py, p2. This class includes
relations defining transitive closure of other relations. Figure 6 presents an
example of a derived relation of this class:

contains(X,Y) : —structure(X,Y).
contains(X,Y) : —structure(X, Z), contains(Z,Y’).

3. Third class: derived relations p whose definition involves only one join
operation (with py or ps) in the second clause.
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4. Fourth class: derived relations p defined by both joins with p; and ps in
the second clause, providing p; and p, are different.

The most efficient method for the first class of derived relations is Naive
method. Namely, in case of such relations, materialization is done by initialization
step which is identically implemented in all the methods. This step is followed,
in Semi-Naive and Henschen-Naqvi methods, by further conditional steps.

The most efficient method for classes 2-4 is Semi-Naive method. Naive
method is eliminated because it has the highest I/O cost. By analyzing I/O
costs of intermediate results of iterations we prove that Semi-Naive method has
better performance over Henschen-Naqvi.

6 Conclusion

In this paper we presented a programming system for deductive database de-
velopment with optimization. Deductive database is developed by interfacing a
relational database with a logical (Prolog-like) language. A query is evaluated
by first materializing all the derived relations participating in it, then by trans-
lating it into SQL and finally by submitting the SQL query obtained to an SQL
processor for execution. Optimization component counsists in choosing one of
the three implemented derived relation evaluation methods — Naive, Semi-Naive
and Henschen-Naqvi, based on efficiency estimation for specific forms of derived
relations.

A classification scheme for a broad class of derived relations is proposed, al-
lowing for the choice of the most efficient method to be made on the basis of
relation syntax alone. For all other derived relations, estimation of the most effi-
cient method is done by materializing it using all the three implemented methods.
This excessive amount of work 1s justified by the realistic assumption that re-
lations (base and derived) represent a static part of the system which is rarely
updated, while queries represent a dynamic part of the system, allowing for many
queries to be formulated over the same set of relations.

Results obtained for examples from various areas of application are in favor
of the chosen approach to optimization in deductive databases.
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Abstract. An algorithm for localization of polynomial zeros is given,
which is based on a mesh-like division of a complex plane. The complex
plane is divided recursively in order to narrow the regions which contain
zeros. After only a few iterations which require modest computation time,
a good starting approximation for an iterative zero-finding algorithm can
be obtained. The programs are written in Mathematica.

1 Introduction

In order to find zeros of the polynomial
P(z) =po+p1z+p2® + -+ pn2". (1)

using an iterative method, starting approximations to these zeros must be found.
There are many methods which can be used to find a region containing all the
zeros of a polynomial, as well as methods which give regions containing only one
zero or a cluster of zeros. In this paper a method for localization of polynomial
zeros is given, which is based on Theorems 1 and 3 from [1]. The program is
written in Mathematica.

2  Algorithm

Theorem 1 gives a disk which contains all the roots of the polynomial P, which
we use as a starting region for the localization of zeros.

Theorem 1. Let Ay, ..., A be positive numbers such that
M+ +Aa<1[<]]

and let 1/
R := max /\;l/k
1<k<N

AN~k
ay

Then R 1s an inclusion radius for P.

P-67
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In particular, by taking A\; = 1/2¥, it follows from Theorem 1 that the disk
centered at the origin with the radius

(2)

contains all the zeros of the polynomial P.

Definition 2. Let S; be a disk with center z; and radius 7;. The interval exten-
sion Pr(S;) of P over S;, called the Taylor circular centered form, is given by
the disk with center

mid(Pr(Si)) = P(z)

and radius

rad(Pr( 5’))_27\1) (z | i

Here, p(*)(z;) is the k—th derivative of P(z) evaluated at point z;. Using
the above exclusion test (0 € P(S;)) and Taylor’s extension, Gargantini has
established the following concrete exclusion test:

Theorem 3. Let z; and r; denole the center and the radius of a disk S;. A disk
S; 1s free of zeros if

IP(:0)] > Z R

Theorem 3 makes it possible to test an arbitrary disk in the complex plane for
presence of polynomial zeros. If the test evaluates to true, then the disk contains
no zeros. If the test evaluates to false, then the disk may contain one or more
zeros of P.

If a region in the complex plane is covered with a rectangular mesh, and each
“cell is covered with a disk, then we can use this test to tell which cells do not
contain any zeros, and which may contain zeros of P.

The cells for which the test evaluates to true are discarded and never tested
again. The cells in which the test evaluates to false are divided in four smaller
cells.

The algorithm has three sections.

1. Find a starting region which contains all zeros of the polynomial. Cover the
region with a rectangular mesh.

2. Mark the cells of the mesh which do not contain any zeros.

3. Discard marked cells. Cover unmarked cells (which may contain zeros) with
a finer mesh. Use this as a starting cover and repeat step 2.

Theorem 1 is used to find a starting region which contains all zeros of P.
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2.1 The Algorithm
We shall consider rectangles in the complex plane, which have edges parallel to
the axes, and length of each edge kh, where k € N and h € R. The number A is
called step.
Each pair of complex numbers (zg, z;) which satisfies

Rezp < Rez;, Imzp < Imz, (3)

determines a unique rectangle and vice versa, each rectangle determines such a
pair. If we write

zg = Rezo, 1 =Rez;, yo=Imzy, y; =Imz.
Then it holds

zo==z9+ Iy and 2=z, + Iy, I=+-1.

Let
e TN T )
t hor T h '’
and
0 ; )
g; =To+(@—=1)h+I(yo+(G—-1)h), .19 L
’l:]j:”0+“l+l(yo+jh), ! ey Ny, ] 12,0ty Ng

It is obvious that n,, n, € N. For each i = 1,2,...,ny,j =1,2,...,n; a
pair of complex numbers (‘l:';',’lilj) defines a square as shown in Figure 1. We
shall mark these squares with k;;. In this way a mesh is formed which consists
of n, x n, squares.

Z)

//\\753

R

h

Figure 1.
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A ny x ng matrix
M = [my;],

is formed, where the element m;; of the matrix represents the square kn _;y1 ;
of the mesh. Elements of M can take values ”valid” and ”invalid”.

If a square does not contain a zero of P, it is marked invalid. Otherwise it is
marked valid. If the square is invalid, the corresponding element of M is set to
“invalid”. If the square is valid, the corresponding element of M is set to ”valid”.
We used the disk from Theorem 3 with center

Cij ZQ?,-+§(1+1)
and radius
o h
"T 1375
to check whether the square k;;,4=1,2,...,ny, j =1,2,..., ny contains zeros
of P. We choose this radius instead of
h

P —
V2

in order to reduce computation error, since 1.375 is a machine number, and /2
is not, and it holds v/2 > 1.375.

For a chosen rectangle, step h and a polynomial P with corresponding values
of 29, 21,ny,ny and M, we form

2 = (z0,21,h,ny,ne, P, M),

which we shall call a region.
The basic idea of a program for automatic determination of polynomial zeros
in the complex plane is presented below.

1. Calculate inclusion radius R for given P, as given in 2.
2. Calculate zg, 21 as

zo=—R(1+I), zn=R(1+1),

which determine smallest rectangle which contains the disk with center at
the origin and radius R.

3. Set ny = ny, = 16, which implies the matrix M is a square matrix with 16
rows and columns. The rectangle is covered with a mesh of 16 x 16 squares.

Calculate
1 — Zo

b)

h =

Ng
where
o = —R, 1 = R.
4. Check whether each square in the mesh is valid or not, and set the corre-

sponding elements of M to ”valid” or ”invalid” respectively. Now we have
the starting region §2.
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From the starting region
2 = (20,21, h,ny,nz, P, M)
calculate a new region

* * kK *
2 = (20,21, 0%, nj,n}, P, M*)

where P
1
h* = 5 n, =2ny, ny=2n,,
and the elements of the matrix

¥ o *
M* = [mij] ;
of dimension ny x ng are determined as follows.
— if the value of the element m;; is "invalid” then the elements

* »*
Moi_1,2j—1 M2i-1,2j
» »*
Myioj—1  Maj oj
are set, to ”invalid”.
— if not, values of these elements are calculated in the test from Theorem
3, with appropriate squares

k:x‘y—'zi,Qj—] k;;—zi,zj
k;;—2i+1.2j—l k;;—2i+l.2j.

Now find all the disjoint groups of valid squares in the region £2*. Assign a
minumal rectangle to each group, that is, the smallest rectangle that contains
the group and has edges parallel to the axes. Mesh squares contained in the
minimal rectangle then form a new region. The corresponding matrix of that
new region is the appropriate submatrix of the matrix M* from the region
a2,

Each new region from the previous step is formed by taking a submatrix
of M*, which corresponds to the minimal rectangle containing that region,
that is, it corresponds to the subset of squares from 2. Other parameters of
the new region are calculated accordingly. The regions obtained in this way
are now called starting regions, and the algorithm is then applied to each of
them, from step 5.

. The algorithm terminates when all the starting regions are smaller than some

previously given ¢.

Disjoint groups of valid squares, which were mentioned in step 6, appear

because the test on £2* is more subtle than the test on §2, because value of step

h* is half the value of h.

Usually after only a couple of iterations we get exactly the same number of

disjoint groups as there are different zeros of the polynomial, and one starting
region is quickly divided in a few smaller ones, which saves a lot of computer
time and memory needed for the matrix M.

The term group of squares, which was used here, is defined as follows.
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Definition4. Two mesh squares z and y are said to be neighbors, which is
written as ¢ Oy, if and only if they have one common edge.

Definition 5. Two squares z and y are said to be connected if they are neighbors
or if there exists an array of squares aq,as,...,ar k> 1, such that

rOa;Casd - $apy.

Definition 6. A set of squares is a group of squares if and only if every two
squares from that set are connected.

2.2 Program
A region f2 is represented by a new data type in Mathematica:
Region[{z0 ,z1 ,h ,ny ,nx ,p ,x}, M

Element z is the variable of P.
The most important functions in the program are:

— Size[b] calculates size of the longer side of the region b;

— FindZeros[p, x, eps] main function for finding polynomial zeros. The it-
erative process is terminated when size of all the regions is smaller than
eps.

— Radius[p, x] is inclusive radius for P.

— Cover[p, {x, z0, z1}, opts] covers the region given by z0 i z1 with a
mesh of 16 x 16 squares, and tests the polynomial P(z) on these squares.
This funkction is used only once in the main function to generate the starting
region, but it can be used to obtain a region with arbitrary zp, z; and number
of mesh squares. The parameter opts allows the number of mesh squares to
be set with the option MeshPoints. Default value is 16. The region obtained
through this function can be covered with a mesh twice as dense by using
the function Refinel[b];

— SplitGroups[b] extracts all the disjoint groups of valid squares from b as
a list of regions.

3 Implementation

Size[b_$\QTR{tt}{Region}$]:=
With[{x0=Re[b[[1,11]1]1,y0=Im[b[[1,111],x1=Re[b[[1,2]1]1],
y1=Im[b[[1,2]111},
Max [x1-x0,y1-y01]

FindZeros[p_, x_, eps_] :=
Module[{W, k, R, 1, L, H, h},
R = Radius[p, x1;
W = {Cover[p, {x, -R*(1 + I), Rx(1 + I)}1};



AN ALGORITHM FOR LOCALIZATION OF POLYNOMIAL ZEROS P-73

L =4{};
While[W !'= {3},

W = Flatten[(SplitGroups[Refine[#1]] & ) /@ W];
1 = Flatten[Position[(Size[#1] <= eps)& /@ W, Truell;
L = Join[L, WL[1]1];
W = W[[Complement [Range[Length[W]], 1117;
1;
L

J
Format [$\QTR{tt}{Region}$[t_,b_] ]:=’’-Oblast-"’

Radius[p_, x_] :=
Module[{n = Exponent[p, x], c},
¢ = Table[Coefficient[p, x, k], {k, 0, n}];
2 Max[Table[Abs[c[[n - k + 111/c[[n + 1111°(1/k), {k, n}]1]
1

MeshPoints: :usage=
"MeshPoints is an option for Cover which specifies how many
mesh points to use.";

Cover[p_, {x_, zOx_, zix_}, opts___] :=
Module[{z0 = z0x, z1 = zl1x, dx, dy, rad, h, n = Exponent[p, x],
test, z, k, e, pts, nx, ny, dp, suma, a, b},
pts = If[opts === Null, 16, (If[NumberQ[#1], #1, 16] & )
[MeshPoints /. opts]];
dx = Re[z1 - z0]; dy = Im[z1 - 20];
If[dx > dy, h = N[dx/pts]; nx = pts; ny = Ceiling[dy/h];
{z0, z1} += Ix(ny*h - dy)/2,
h = N[dy/pts]; ny = ptg; nx = Ceiling[dx/hl;
{z0, z1} += (nx*h - dx)/2];
rad = h/1.375;
dp = Table[Simplify[D[p, {x, k}]1], {k, n}];
suma = Simplify[Sum[(Abs[dp[[k]]]*rad-k)/k!, {k, 1, n}]];
test[z_] := If[Abs[p /. x => z] > suma /. x -> z, "#", 0];
$\QTR{tt}{Region}$[{z0, z1, h, ny, nx, p, x},
Table[test[z0 + i*h + h/2 + I*(j*h + h/2)], {j, 0, ny - 1},
{i, 0, nx - 1}]]
]

Refine[b_$\QTR{tt}{Region}$] :=
Module[{c, Dbl, z, i, j, k, x0 = Re[b[[1,1]]], yO = Im[b[[1,1]]],

x1 = Re[b[[1,2]]], y1 = Im[b[[1,2)]], h = b[[1,3]1/2, ny = 2#b[[1,4]],
nx = 2#b[[1,5]], p = b[[1,6]], x = b[[1,7]], test, dp, n, rad, h2},
n = Exponent(p, x];
Dbl[h_] := Flatten[({#1, #1} & ) /@ h, 1];
¢ = Dbl[Dbl /e b[[2]]];
rad = h/1.375;
dp = Table[Simplify(D[p, {x, kX}]1], {k, n}];
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suma = Simplify[Sum[(Abs[dp[[k]]1]#rad~k)/k!, {k, 1, n}]1];
test[z_]1 := If[Abs[p /. x => 2] > suma /. x -> z, "#", 0];
$\QTR{tt}{Region}$[{b[[1,111, b[[1,2]11, h, ny, nx, p, x},
Table[If[cl[j,il] == "#", "#",
test[x0 + (i - 1)#h + h/2 + I*(y0 + (j - 1)*h + h/2)1],
{j, ny}, {i, nx}1]
1

Weighbor[{x0_, yo_}, {x1_, y1_}] :=
True /; yO == y1 && (x0 == x1 + 1 || x0 + 1 == x1) ||
x0 == x1 && (yO =yl +1|] y0o + 1 == y1);
Neighbor[{_, _}, {_, _}] := False;

CountGroups [b0_Oblast] :=
Module[{b=b0O[[2]],p,h,nov,br=0},
p=Position[b,0];
While[p != {3,

h={First[pl};

br++;

nov={};

While[h\ [NotEquall{},
h=Join[h,Select[p,Neighbor [First[h],#1&1]1;
p=Complement [p,h];
nov=Append[nov,First[h]];
h=Rest [h];

i

b=ReplacePart [b,br,nov];

1;
{br,$\QTR{tt}{Region}$[bO[[1]1],b]}
]

ExtractGroup[b0_$\QTR{tt}{Region}$, n_1 :=
Module[{x0, y0, x1, y1, z0, z1, h, b = bo[[2]], p},
{z0, z1, h} = Take[bO[[11], {1, 3}]; p = Position[b, nl;
If[p '= {}, p = Transposelpl;
{x0, y0, x1, y1} = {Min[p[[211]1, Min[p[[111], Max[p[[2111,
Max[p[[1111};
$\QTR{tt}{Region}$[Join[{z0 + (x0 - 1)*h + I*(yO — 1)#h,
z0 + x1%h + I*ylsh, h, y1 - y0 + 1, x1 - x0 + 1},
Take[bO[[111, {6, 7}11,
Take[(Take[#1, {x0, x1}] & ) /@ b, {yo0, yi}11,
Null
1

SplitGroups[b0_$\QTR{tt}{Region}$]:=
Module[{n,1},
{n,1}=CountGroups[b0] ;
Table[ExtractGroup[1,i],{i,n}]
1
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4 Example

We have tested the program on a polynomial of degree 7, which has all roots
of degree 1. In Figure 2 the inclusion disk is shown, and only one group of
valid squares is found. However, when this region is covered with a mesh twice
as dense, seven disjoint groups of squares show up, which give us approximate
positions of the roots.

e - i

Figure 2. Figure 3.

The region marked with an arrow in Figure 3 is divided further in figures
4-6. The original is shown in Figure 4. When refined, it ”shrinks” to the region
painted darker in Figure 5. This region is taken as a starting region for the next
iteration (Figure 6).

Figure 4. Figure 5. Figure 6.
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Abstract. In the present work, the isomorphically complete systems of
tree antomata with respect to the v-products and the star-product are
characterized. The descriptions shows that the v-product is equivalent
to the star-prodnct regarding the isomorphically complete systems of
tree antomata, for all positive integer @ Moreover, it is proved that the
vi-products constitute a proper hierarchy for the tree automata.

1 Introduction

In general, a composition of antomata can be considered as a network ol au-
tomata where the input sign of each antomaton of this network depends on the
imput sign of the network and the actual states of the network neighbours of
the automaton considered. If the number of the neighbours 1s bounded by a
positive integer 7, then we obtain the notion of the v -product. This notion 1s
introduced i [1] where the isomorphic representation and simulation regarding
the v-product are studied. Further studies on the vi-products can be found in
the works [2], [3], [4], [6]. [7]. [9], [11], [13]. Here, we generalize the notion of
the v~ product to tree antomata and characterize the isomorphically complete
systems of tree automata with respect to the v-product, for all 7,7 = 1,2, ...
Furthermore, it is shown that the hierarchy of the v-products is proper. An-
other kind of compositions is the star-product (see [5], [10], [14], [15]) where
the network contains a central automaton and each further automaton has the
central automaton as its neighbour and conversely. We generalize this notion
to tree automata and characterize the isomorphically complete systems of tree
antomata with respect to the star-product. This characterization shows that the
star-product is equivalent to the v-product with respect to the isomorphically
complete systems of tree automata, for all positive integer 2.

This work has been supported by the Hungarian National Foundation for Scientific
Research, Grant 014888, and by the Ministry of Culture and Education of Hungary,
Grant FKFP 0704/1997.
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2 Preliminaries

First of all, we recall some notions from [12]. By a set of operational symbols,
we mean a nonempty union £ = Sy JZ ..., where X, m = 0,1,..., are
pairwise disjoint sets of symbols. For any m > 0, the set Y, 1s called the set of
m-ary operalional symbols. Tt is said that the rank or arily of a symbol o € s
mifo e Y, Now, let aset U of operational symmbols aud a set. R of nonnegative
integers be given. R is called the rank-type of it X, # (0 if and only if m € R,
for every integer m > 0. Lett X' be a set of operational symbols with rank-type
R. By a Y-algebra A, we mean a pair consisting of a nonempty set A and a
mapping that assigns to every operational symbol o € ¥ an m-ary operation
A - Am

o — A where the arity of o 1s m. The set A 1s called the set of elements

A

mentioned explicitly, but we write A = (A, Y). It is said that a Y-algebra A is

of A and o s the realization of o an A. The mapping o — o will not be
findte if A s finite, and 1t 1s of finile type if ¥ is finite. By a tree automaton, we
mean afinite algebra of finite type. Finally, it 1s said that the rank-type of a tree
auwtomaton A = (A, V) is Rif the rank-type of X is R.

Now, let. us denote the class of all tree automata with rank-type R by Up.
In what follows, we need a sequence of special tree automata in Ug. For this
purpose. let & be an arbitrary positive integer. For every m € R, let us assign
one and only one symbol to each me-ary operation over {l,... k}. Let (~)§7A,,‘]
denote the set of these symbols and let @) = U{(f)&:,f) :m € R}. Define the free
automaton By, = ({1,...,k},0%)) such that, for every m € R and o € oL,
B

is the m-ary operation assigned to o above.

3 wv;-products

In this section, the v;-products of free automata are studied. In order to define
the v;-product, let 7 be an arbitrarily fixed positive integer. Let A = (A, X) € U
and A; = (A;,ZU)) € Ug, j = 1,...,n. Let the neighbours be given by the
function v : {l,...,n} — P({l,...,n}) satisfying [y(j)| < i, for all j, j =
I,...,n, where P({1,...,n}) denotes the power-set of {1,...,n}. Furthermore,
take a family ¢ of mappings defined by

o - Ty — E((,J) provided that 0 € R, and

o (A1 X X A" X D —SU) 0£meR, |
<r‘ ) ni

IN

i<n.

It is said that the tree antomaton A is a vp-product of A;, j = 1,....n, with
respect Lo ¢ and 5 if the following conditions are satisfied:

i) A=]J4,
Jj=1

(i) if 0 € R, then for every o € T, oA = (U"lAl,....,(rf‘") is valid where
o; = uj(o), forall j, j=1,... n,
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(iii) for every 0 #m € R, j € {l,....n} and s
((“’l]y- "wu‘lﬂ)!' . '\((l'ﬂllx' . -‘”nm)) e A™,

@ 15 independent of the elements ape, £ =1, m, il s & v(Jj),
(iv) for every m € R, ¢ € Xy, (@11, Gin)ye ooy (@Qmty ooy ttmn)) € A™,
A . -
T ((”l ly«-- v”'ln)a ey (”‘ml B ( FTTTTY )) =

(o7 Mg 1 oo s Wl Y o3 rr,‘é" (Tgs 5505 5 W)}
whiere @5 = @mi ({11, v o oslin)ivs s (Manissess G )s @)y J=Liowsins
We shall nse the notation H}“:, Ai(Y, p.y) for the product introduced above,
and sometimes we shall indicate only those variables of ¢,,; on which it may
(|(‘|n‘ll(|‘

Lot 5 be asystem of tree automata from M. Tts said that B s esomorphecally
complete for Up with respeet Lo the vi-product il any tree antomaton from My
can be embedded isomorphically into a wvi-product of tree antomata from 3.

Now. we are ready to characterize the isomorphically complete systens of tree
autonata with respect to the vi-product. The following statement is obvious if
R={0}.

Theorem L. A system B(C Uygy) of tree awlomata s isomorphically complete
for- gy weth vespecl Lo the vi-product of and only of there coists an A € 5 suelh
that By can be embedded isomorphically into a vi-product of A wilh a single
[aclor

Let us suppose that ) # {0}, Then, the following statement is valid.

Theovem 2. A system B(C Up) of lree aulomalta s isomorphecally complele for
U wilh respect Lo the vi-product of and only of. for any postlive anleger k. there
crests an A € B such that By can be cmbedded asomorphically imito a vi-product
of A wilh a single factor.

P'roof. The sufliciency of the condition follows from the fact that any tree au-
toraton of k states from Uy can be embedded isomorphically into a v-producet
of By with a single factor.

1A = 1. then the necessity s obvious, Now, let & > 2 he an arbitrary integer
and let us denote £ by w. First, we prove the following statement. I B, can
be embedded isomorphically into a wi-produet A = T2 A; (0 . 7) of tree

antomata A; € Ug, j = 1,....n, then Be can be embedded isomorphically into
a vi-product of Aj with a single factor for some j € {1.....n}. Let p denote
an isomorphisim of By, into A, and let us denote by (agy, .. ..ag,) the nnage of 1
under g forall 2,0 =1, w. Withont loss of generality, it can be assumed that
ey # gy forsome r # s e {1, ....w} Indeed, in the opposite case, B, can be
embedded isomorphically into a vi-produet of Aq, ..., A,. By the definition of
the vi-product, its ordering is rearrangable. Therefore, we may assume that 5(1)0
{1}y =1{1,....0}) where [ < i+ 1. Now, we prove that the elements (ay), M)
t = 1. .. w. are pairwise different. Contrary, let us suppose that there are p #
g € {1 w)such that ay, = a,,. v = | A Let e # 0 be an arbitrarily fixed
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element of R. For every t € {1,... w}, let us denote by o,y an m-ary operational

symbol of B, satisfying (r]]?"’(l, oo bhip) = ¢ and 0713(1 swnyds @) = g Sinee

R # {0} such an operational symbol exists. Then, for every t € {1,..., w},
B., .
(u‘f.lv ¥ g (Hn) = /I(I) = /[.((T]” (1‘ s e g 1’]))) = (fié(/l(l), e )/l'(l)vﬂ(l”)) =
(0%1 (T« oo s @1 gl ) 5 00 (ré {5 <+ 5 Wiy Oy ))

is valid, and thus, ay = rr]A‘ (ary, ... ayr, ay) where

o1 = @@t} (arg, . ‘/"ln)» ({"7vl: cee (Lym)- (r/vt) =

emi (@, ..., “‘I/'”‘]1|~---v”’]i/aO’]!i)'
In the same way as above, we get that a, = Frf&‘ (a11,...,a11,aq1) where
T1 = @mi(ar, - gy, e, dg, 0pe). Then, by the equalities ap, = agy,

v=1,...,[, we obtain that oy = ay. This immplies ay; = a,1. ¢ =1, ..., w, which
contradicts the assumption a,y # as;. Consequently, the elements (aqq, ..., agy),
L= 1,...,w. are pairwise different.

Now, we prove that By, can be embedded isomorphically into a v-product of
A, AL Sinee (agy, -, ay), =1, 000w, are pairwise different, the mapping
po (g, ay) — (ag, ..o a), t =1, ... w, 18 a one-to-one mapping. Let

! N = o= . .
us form the y-product, Hj:l A (O o 4) as follows. Let (r) = {1,..., 1},
for all », » = 1,...,[. Let us denote the set {(ayy,...,ay) -t = 1,....,w} by
C". Obviously, (' C szl Aj. Define the mappings @i, m € R, j € {1,...,1},
i the following way. If 0 € R. then let @y;(0) = @g;(0), for all j € {1,..., i}
and o € (';)éw). Furthermore, for every 0 £ m € R, j € {1l.... [}, 0 € CINeS
; {
by={bi;. .. by) € [[og Ar, t=1,...,m, let

‘,E-m_j ((b] RS bnl ) (Y) =

’59777.,7-(/)(111% SRR /)(hnl)u (f) if bi = ("'1 t= 11 ceey T

a fixed operational symbol from S’i,‘z) otherwise.
Obviously. ¢,,; 1s well defined. Let us define the mapping 8 by () = (a1, ... ay),
t = I,....w. Then, it 18 easy fto see that /7 is an isomorphism of B, into

ITj= A5(6),2,7).

As the next step, we show that By can be embedded isomorphically into a ;-
product of A; with a single factor for some j € {1,...,(}. Since { <141 and w =
EFY there exists a j € {1,... [} such that the mumber of the pairwise different
elements among ayj, ..., ay; is not less than k. For the sake of simplicity, let

us suppose that ay;, ..., ag; are pairwise different. Then, 71 ay; — (a4, ..., ay)

& 3 k =
1s a one-to-one mapping. For every m € R, o € OF) et us denote by o an

B,

: w) e =B, -
operational symbol from 0% satisfying Ty g = O Now, form the ;-

product A; (W) * ) with a single factor as follows. Let y*(1) = {1}. If 0 €
R, then let () = @uj(0), for all o € (-),(,M. Furthermore, for any 0 # m € R,

Ak _
o e (")5,,,)‘ Wi 55t 5 5 5 i € f‘j, let
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[ B (73}, Tt ), ) i€ {1k b=,

l afixed operational svimbol from L’:,‘f otherwise,

By the construction, it can he easily proved that the mapping & delined by
O(s) = ag, s =1, ... k.is an isomorphism of By into Aj((-)”‘".w".')**).

Now, the necessity can be readily proved. Indeed, let. & > 2 be an arbitrary
integer. Let us consider the tree antomaton B, where w = 't Sinee B s
isomorphically complete with respect to the vi-product, By, can be embedded
B sishizallv i 5 TR " - n i) s A " iree af:
somorphically into a vi-product. A = [[7_ Aj (") 7) of tree antomata
fromn 5. Then, by the prool above, By can be embedded isomorphically into a
vi-product ol A with a single factor for some j € {1, ... n} which completes
the ])l'(n)l',

By the theorems above, the following corollary is obvious.,

Covollary 1. For every rank-type ¢, the vi-product is equivalent to the v;-
product with respect to the isomarphically complete systems of tree automata
where 7 and j are arbitrary positive integers.

Remark. Let us observe that Uy s the elass of the traditional antomata if
o= {1 To this case, By denotes such an antomaton which has & states and the
iput signs mducee the all transformations over {10 &} Therefore, we obtain
the characterization of the somorphically complete systems of automata with
respect to the = praduct presented in [1] as a special case of Theorem 2.

For studying the hierarchy of the vi-products, let us introduee the following
notion. For every nonempty set M C Uy and positive integer k&, let v, (M) denote
the elass of all tree antomata from Uy which can be embedded somorphically
mta a -product of tree antomata from M. Now, et i #£ J be arbitrary integers
It s sand that the vi-product s somorphically more general than the vj-produoct
i (M) Co (M) s valid, for any set @ # M C Up, furthermore, there exists at
least one set B £ M C Uy such that v (M) C i,(M). We note that this notion
was originally mtroduced e [8] for the ag-products.

The following statement presents that the lnerarchy of the v-products s
proper i l {()}.

Theovem 3. For cvcry pawres of posilioe mbegers w, v the v, -product s isomor-
phecally more geneval than the vy -product of u < v.

I'roof. Let u < v be arbitrarily fixed integers. By the defimtion of the -
products. it is obvious that v, (M) C v (M) 1s valid, for all nonempty set
W C Uk Now, let M = {Bs} and 7 be an arbitrary positive integer.

As a first step, the validity of Baos € 115(M) is proved. Let us denote 2+l

by w, and let g be a one-to-one mapping of {1,....w} onto {1, 2} It s
- =2 = {w) .

shown that, for every 0 # m € R. o0 € Oy ', ay = (aq,....a5) € {1,2})

f I m. an m-ary operation @’ over {12} can be determined. For tlis

purpose, let oo € (1,2}, 1 I.....om, and let aj (1) ey, +¢). Then
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ap e {1,210 =1, ...,m, and thus, there is one and only one i, € {1,... w}
such that pi(i) = af, for all 1, ¢t = 1,....m. Now, let (TB’”(iI ..... im) = s and
p(s) = (by,....b;,u). Let us define o by a'(ay, ..., 1) = 1. Obviously, ¢ is an

m-ary operation over { 1.2}, We recall o/ as the m-ary operation induced by the
clements o, ag. ..., a,,.

Now. let us form the vi-power A = B'“(() W) o ) as follows. Let v(j) =
(Lo i+ 1PN\ 4y}, forall j, 5= 1,....i+ L. In this case, for every 0 £ m € R,
and j € {1,..., i+ I}, the mapping ¢,,,; has the following form:

0 grEym oo o(w) (2)
‘r?'”vv) % ( 1 I 1 Z} ) A ()m - ()m E
Let us define the family ¢ of mappings in the following way. If 0 € R. then
. 2) . ’ g
let ns denote by a;n the operational symbol of (~)I, which has the realization

B

e =tfori=12 Forevery o€ (-),(,M and je [l ... i+ 1} let “"f)j( ) = Tip

T
o 5 e . ' : B. T - R (w)
where @ 1s the _/—1‘11 cotponent. of p(e ). Now, let 0 £ m € R, Om’,
Ay = ey attgg) BLL2 =100, m. Then, p,,; is delined by
#
Sﬁm,j(“l oy '(‘m.‘(f) =0

where the realization of ¢* 1s the m-ary operation induced by the elements o,
ay,...a,,. By the definition of By, such an operational symbol exists.
Now, we prove that i is an isomorphism of B onto A. For this purpose, let

us denote pi(s) by (g, ..t jpr), forall s, s = 1,.. ., w. 1Mroe Rand o e ()(“ b

then the equality /l((TB”') = oB follows from the definition of the mappings
@oj.j=1,....t+ 1. Now,let 0 £me R, o € €O ky, ...k o € Lo w) be
arbitrary elements. We have to prove that

woBr(hy, k) = k). k).
Let oB w(hy, .o k) = ko By the definition of A,

A B. B.
(i )i s o o5 f0Rm)) = (0] (Mgt 5 < 5 60 e = o5 Tt (g i1y - oy Wil ))
(7) (7)
where o; = g:,,,_]-(a‘," L ‘a,,', ,o) and
By =Wy T (N R R SN T 3 [ (NS )
Consequently, it is enongh to show that ag; = o7 % (ag ;... ag,,;) is valid, for

all j,j = 1,....0i4 1. Bul this is obvious, siuce a7 s the m-ary operation
: () :
induced by the elements a, a)’’,
B € 1;(Bay).

To complete our proof, we show that Bog1r & v;— (M) provided that 2 > 1.
For verifying this statement, the same idea can be used as in the proof of Theorem

Aj

of tree automata from M. then Boit1 can be embeded isomorphically into a w;-

A,aS,];)‘ for ali j, j = 1,...,7+ 1. Therefore,

2. Namely. if Boiti can be embedded isomorphically into a v;_ -product H1—J
product of tree automata from M with at most 7 factors. But the number of the
elements of the latter product is not greater than 2* which is a contradiction.
Consequently, v;_ (M) C (M) is valid for all i > 2 which completes the proof
of Theorem 3.
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4 Star-product

This composition can be visualised in such a way that there 1s a central tree
automaton and its behaviour depends on itsell and the other ones, while each
further tree antomatan depends on itsell and on the central one.

For giving the formal definition, let A = (A, X) € Uy and A; = (A;, LV)) €
Up.j=1..... . Furthermore, take a fanily @ of mappings defined by

wo; Xy — S((,'” provided that 0 € I2,

iy S (AL Ko X )™ x B — DN G m € R,
G 5 (A % A x Ky, — S 0#FmeR, 2<j<n,
It is sand that the tree automaton A is a star-product of Ay j = 1,..., 1, with

respect to g il the following conditions are satisfied:

(a) A= H Ai

p=
(hy 100 & I, then for every o € V. oA = () '..H.rr,‘:x") holds where
& = nila)s g =1, oo o0,
(eyTorany me R, o€ Yy, ((agye oo otyn)y o, Corinpion o5 44 By ) ) E A™,
!TA((III] ..... TETTR P (T [/ 1) E—
(n{\‘(u[,‘....u,,,]).....rr“' W ey » = 50 )
where oy = @p((a@y gy, .oy Wn s o8 wsl@rllvon s o ). o) and
i = @mi((trg.oayj) oo (g )oo), J=2,....m.

We shall use the notation ]_[',',:| A (Y ) Tor the product introdneed.

Lot 8 he asystem of tree antomata from Mg T is saad Chad Bs asomorphically
complete for Uy wth vespect Lo the star-product if any tree antomaton from My
can be embedded isomorplically into a star-product of tree antomata from 5.

As ar as the somorphically complete systems of tree antomata witl respect
to the star-product are concerned, we have the following statements.

Theoremd, A system BIC Uyay) of tree aulomata s esomorphically comple o
for- Uy with vespeet to the star-product of and only of there cawsts an A € B such
that B can be cmhedded tsomorphically into a star-product of A with a single
Jactlo

Now, let us suppose that [t # [0}, Then, the following statement is valid

Theorem b, A system B(C Uy) of trec antomala s isomorphwally complete for
Uy with vespect Lo the star-product of and only of. for any postlive imteger k, there
crists an A € B such that By can be cmbedded isomorphically into a star-product
of A with a swugle factor
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Proof. The sufliciency is based on the fact that any tree automaton of & states
from Up can be embedded somorphically into a star-product of By with a
single factor. The necessity can be proved in a similar way as that of The-
orem 2. Namely, if Byx can be embedded isomorphically into a star-product
H;':‘ Aj((;)“‘l’, ), then By can be embedded isomorphically into a star-product
A (OF) o) with a single factor for some j € {1,... n}.

Theorems 1. 2, 4. and 5 imply the following observation.

Corollarvy 2. For every rank-type R and every positive integer 7, the star-
product is equivalent to the vi-product with respect to the isomorphically con-
plete systems of tree autonata.
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Abstract - Algorithm for the PP-reduction a Propositional Calculus formula to the
clause form, which can be used for every binary operator, is described in the paper.
The consequence of its application is that disjunction of each two clauses is a satisfied
clause. Furthermore, the inferring Resolution Rule may be replaced by the given
“summation" rule.

Key words: Automated theorem proving, Resolution, Principle of Contradiction
1. Introduction

In the Resolution theorem proving system, the theorem of the Propositional
Calculus is proved by transforming the negation of the formula to the
conjunctive normal form, i. e. to the set of the clauses.

The system of the new rules for constructing the set of the clauses of the
Propositional Calculus formula, is introduced in [1]. Clause term has been
"raised" so that the elements of the clauses are signed subformulas of the
negation of the given formula, not necessary the atomic ones, as in the classic
case. If the elements of the clauses are atomic, the clause is considered as a
finished one, in the sense that further application of the rules is not possible any
more.

Crucial point of the new system is the introduction of the Contradiction
Principle:
- 18}
PP: (A T A}
{A.F A}

where the reduction rules are generated from:

p_. {8 FAB) (A, T AvB} (A, T A>B}

" (A, F A, FB) (A, TA,TB) {A,FA, TB})

Ppoy 1. T AAB) {A,F AvB) (A, F A>B)
(A TA} (A, FA) (A, TA,)
{A,F A, TB) (A, T A, F B} (A, F A, FB)

1’85
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Including this principle, semantic rules [1] need to be added. They can be divided
into three groups, according to the way they reduce the clauses: {A, Z, A*B, Z,
C} (where: A = disjunction of some signed subformulas of the starting formula; *
= binary logic operation A, v or —; C = one of the formulas A or B; Z,; = sign of
the formula, and may be "T" or F"):

p.{AZ A*B,Z,C} p. {8,Z, A*B, Z,C} p.. 18,Z, A*B, Z, C}
. - 3 {A, Z,C} ¥ {A,Z,A,Z, B} -

In spite of the fact that semantic rules were cited only for the clauses of the
form:

{A,Z, AxB,Z, A},
they can also be used on the clauses:
{A,Z,-A*B,Z, A}
after their equivalent transforming to:
{A,Z, =A*B,Z, -A}, Z, is the opposite sign to Z,.

Reduction follows as: first clause is the negation of the given formula. New
clause is generated by applying one of the rules. The procedure is being
repeated until one of the rules can be applied, namely, while there exists a
clause with at least one non atomic clause.

2. Semantic of the rules

The rules Py, P, and P, are the "compressing" ones: either they delete the clause
(Py), or decrease the number of formulas (i. e. disjuncts of the conjunctive
normal form) inside (P,) or simplify its structure (P,). The rules P,, are the only
"expanding" ones: either they increase the number of disjuncts within the clause
or increase the number of clauses in the deducing. The sequence cf their
application is naturally imposed: if it is possible, the rules P, are applied first,
then the rules P,, P, and finally Ppp. As the consequence, the application of the
rules Pp, are avoided, if for that disjunct, the application of one of the
"compressing" rules is possible. As there are disjuncts permitting the application
of the both, Ppp and one of the Py, P, or P, rules, the question of signification of
the application the P, rules, for that clause, may be asked. In that sense, for
each clause, the set of the significant rules for reduction, may be chosen.

Definition 1.
1) The application of the P;rule i€ {0,1,2}, is significant.

ii) The application of the Ppp rule is significant, only if it is related to the disjunct
for which the application of one of the P;, i€ {0,1,2}, rules is not possible in
the clause.
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iii) For the clause, the set of the significant rules is built by all rules whose
application is significant.

As the rules are applied to the clause, but effectively related to one or two

disjuncts (always the formula and one of its main subformulas corresponds to

them) the next types of the disjuncts may be established: .

— the pair of disjuncts {d,,d,} is of the type i, if the P, rule, i€{0,1,2}, may be
applied;

— the disjunct is of the type PP (PP-disjunct) if the Ppp rule (Ppp, or Ppp,), may
be applied; it should be noticed that all non atomic disjuncts in the clause, are
PP-disjuncts.

The next notion of the i-pair, needs to be introduced:

Definition 2. If the pair of disjuncts {d,,d,} is of the type i, i€ {0,1,2}, the ordered
pair (d,,d,) is i-pair, if d, corresponds to the main (one of the existing two)
subformula of the formula of the d,. For the PP-disjunct d, (d,0) is PP-pair.

The presence of the pair of some type, for the clause, means the possibility of
application the corresponding rule. In that sense, as the disjunct d may be paired
both in the i-pair, i€ {0,1,2} and in the PP-pair, the significance of the pair may be
considered.

Definition 3. Significant pair is every i-pair, i€ {0,1,2} and only that PP-pair (d,0),
whose disjunct d is not paired within some i-pair, i€ {0,1,2}. All significant pairs
of the clause build its ser of the significant pairs (SZP).

Reduction algorithm is the algorithm for the application of the rules, i. e. the
algorithm of forming the clauses and their sets of the significant pairs. As the
clause and its SZP are always observed together, it is natural to include the next
definition:

Definition 4. Overclause is ordered pair (S,P), where S is clause, and P is its set of
significant pairs.

[t is possible to prove the next Lemma:

Lemma 1. For each binary operation * (one of the 16), next two statements are
valid:

1) (A*X)vA may be equally transformed to one of the formulas: A, XvA,
-XVA, True

ii) (A*X)v-~A may be equally transformed to one of the formulas - A, Xv-A,
-~Xv-A, True.
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Corollary 1: Developing the clause {A, Z, A*X,Z, A} or {A, Z,-A*X,Z,A},
one of the clauses: {A, Z, A}, {A, Z, X, Z, A}, {A, Z,' X, Z, A} is always
obtained, or it is deleted from the set of the clauses, as satisfied.

Corollary 2: Applying the rule to overclause (S,P), means:
1. rule P, for 1-pair (d,,d,):

— delete d, from the clause S;

— delete all pairs participating d,, from SZP; the disjuncts which are paired
only with d,, become PP-disjuncts, so complete SZP, with corresponding
PP-pairs.

2. rule P, for 2-pair (d,,d,):

— delete d, from the clause S; add the disjunct related to the other main
subformula of the formula of d, (as d, is related to one main subformula of
the formula of d,,) with corresponding sign, to the clause, only if that
disjunct or its conjugate one is not inside the clause; if the conjugate of the
disjunct is present, delete the overclause, because the clause is satisfied one.

- delete all pairs participating d,, from SZP; the disjuncts which are paired
only with d;, become PP-disjuncts, so complete SZP, with corresponding
PP-pairs; if the disjunct has been added in the clause, establish the pairs it
makes with the other disjuncts in the clause and complete the SZP.

3. rule Py, for PP-pair (d,0):
— decide about the type of the Py rule;
3.1 rule Ppp; for PP-pair (d,0):

—delete d from the clause S; add to the clause two new disjuncts, related to
main subformulas of the formula of d, signed according to the
corresponding rule;

- delete pair (d,0) from SZP and, for added disjuncts, establish the pairs they
make with the other disjuncts in the clause and complete the SZP.

3.2 rule Py, for PP-pair (d,0):

- make another overclause (S,,P,) = (S,P);

— delete d from the clause S; add to the clause two new disjuncts, related to
main subformulas of the formula of d, signed according to the
corresponding rule;

— delete pair (d,0) from P and for added disjuncts, establish the pairs they
make with the other disjuncts in the clause and complete the SZP P;

- delete d from the clause S,; add to the clause the disjunct, related to the one
main subformula of the formula of d, signed according the corresponding
rule;

- delete pair (d,0) from P, and for added disjunct, establish the pairs it makes
with the other disjuncts in the clause and complete the SZP P;.
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3. Reduction algorithm

Step 1. For the formula X, first overclause is ({F X},{(F X,0}).

Step 2. Next overclause is deduced from the overclause with non empty SZP as:
2.1 If there is O-pair, in the set of significant pairs, apply P, rule and go to step 3.
If not, go to 2.2. '

2.2 If there is 1-pair, in the set of significant pairs, apply P, rule and go to step 3.
If not, go to 2.3.

2.3 If there is 2-pair, in the set of significant pairs, apply P, rule and go to step 3.
If not, go to 2.4.

2.4 If there is PP-pair, in the set of significant pairs, apply PP rule and go to
step 3.

Step 3. Find overclause with non empty SZP and go to step 1. If such an
overclause doesn’t exist, gc to step 4.

Step 4. If the empty set of the clauses is generated, formula is not the theorem.
In the opposite case, conclude the proof including the Resolution Rule.

4. Algorithm application corollaries

After the algorithm application, the sequence of the clauses S,, S,, ..., S,, is
generated, with the next properties:

Corollary 1. For each of the two clauses S, and §; it is valid: §;v§;= 1.
Corollary 2. Clauses are distinct.

Corollary 3. Two clauses, written in the canonical conjunctive normal form,
cannot have the same elementary canonical disjunctions.
Let q,, q,, ..., q, be all propositional letters present in the generated clauses.
Then it may be introduced the next presentation form for the clauses:

m n

B a
AS = AvVg"
1= im] =]

where: if g, is in the i-th clause with sign T, ;= |
if q,is in the i-th clause with sign F’, a; = -1
if g is not in the i-th clause, a; = 0
The matrix A of signs may be consequently generated for each formula:
S T
A=l y

ml"" Y mn
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By summing the column elements, the difference between the number of the
propositional letter and the number of its negation, is obtained. The rows
containing zero(s), are related to the clauses which are the minimal form of
more elementary canonical disjunctions (2, 4, 8,...). Through this fact, the
validity of the formula can be decided:

Theorem 1. If the next statement is true for the matrix of signs of the formula —X:

m
ZCXUQk‘ =0, forevery j=1,2,..,n; wherek; is number of zeroes in i-th row

i=1

then the formula is a theorem. If there is an index j for which the conditions fail,
then the formula is not a theorem.

5. Conclusion

In the Propositional Calculus theorem proving systems, based on resolution:

— multiple generating of the same clause,

— deducing of satisfied clauses,

— generating more clauses which semantically correspond to only one clause

is possible. These problems are solved by heuristics, which are based on the
search over the set of the clauses. Another problem is the application of the
Resolution Rule, which in every step generates one clause more, expanding the
set of available clauses.

The establishment of the algorithm for generating final clauses, which have next
properties:

— there aren’t the same disjuncts within the clause,

— each clause is not satisfied,

— disjunct of each two clauses is a satisfied clause,

— each two clauses are distinct

becomes possible after introducing the Contradiction Principle and the
corresponding semantic rules in the reduction system. As a consequence, it is
possible to conclude the proof with the clauses generated by the algorithm,
without application of the Resolution Rule, due to the given "summation" rule.
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Abstract. 1t is part of the tradition and folklore of automated rea-
soning that the intractability of Cooper’s decision procednre for Pres-
burger integer arithmetic makes is too expensive for practical use. More
than 25 years of work has resulted in numerons approximate procedures
via rational arithmetic, all of which are incomplete and restricted to
the gquantifier-free fragment. In this paper we report on an experiment,
which strongly questions this tradition. We measured the performance of
procedures due to Hodes, Cooper (and heuristic variants thereof which
detect connterexamples), across a corpus of 10000 randomly generated
quantificr-free Presburger formulac. The results are startling: a variant
of Cooper’s procedure outperforms Hodes™ procedure, and is fast enough
for practical use. These resnlts contradict muoch perceived wisdom that
decision procedures for integer arnthmetic are too expensive to use in

practice,

1  Introduction

A decision procedure for some theory s an algorithm which for every formula
tells whether it s valid or not. The role of decision procedures is eritical in many
areas, including theoremn proving. As Boyer and Moore wrote [2, §1]

“It is generally agreed that when practical theorem provers are finally
available they will contain both heuristic components and many decision
procedures.”

I'he first author is supported by The Bntish Scholarship Trust. The other au-
thors are supported in part by grants EPSRC GR/L/11724, and British Council
ROM /889/95/70.
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Indeed, even (generally) nefficient. decision procedures could reduce the search
space of heuristic components of a prover and increase its abilities: a decision
procedire can both close a branch in a proofl, and reject non-theorems. Decision
procedures can also have a importaut role in other areas such as geometry and
type checking. for example.

A core part of automatic theorem proving mvolves reasoning with integer
and natural numbers. Since the whole of integer arithmetic is undecidable, we
are Torced to look for “useful”. decidable sub-theories: there 18 a trade-off between
nselmlness and the complexity of associated decision procedures. In this paper,
we fake Presburger arithmetic: 1t is useful and there are a number of decision
procedures.

In this paper we want to compare two decision procedures (and some sinple
variations thereof): that due to Hodes for Preshurger rational arithimetic and
that due to Cooper, for Presburger integer arithmetic. It 1s part of the tradi-
tion and folklore of antomated reasoning that Cooper’s decision procedure for
Presburger imteger arithimetic is too expensive to be of practical use. More than
25 vears ol work has resulted in nmumerous approximate procedures via rational
arithmetic, all of which are incomplete and restricted to the quantifier-free frag-
ment. 1t is known that the (worst-case) time complexity of Cooper’s procedure

n

I8 2 in the size of the formula,” and moreover, this is much worse than Hodes’

procedure. Boyer and Moore state [2, §3]

mteger decision procedures are quite complicated compared to the
many well-known decision procedures for linear inequalitios over fhe ra-
tionals [...]. Therefore, following the tradition in program verification,

9

we adopted a rational-hased procedure. ..

It is this “tradition’ of work in the rationals [1, 9, 10, 2] that we question in this
paper. Anecdotal testimonies to this tradition abound i the literature but we
are not aware of any experimental comparison of procedures.

Here we report on an experimental comparison of procedures on 10000 ran-
domly generated formulae. However, the results are very surprising—Dbroadly,
they show that a simple variant of Cooper’s procedure oulperforms Hodes™ pro-
cedureon our sample corpus!

These results cast some doubt on the perceived wisdom in the antomated
reasoning community that full decision procedures for integer arithinetic are too
expensive to use in practice.

Owverview of paper. §2.1 defines Presburger arithmetic, procedures and notation.
§3 describes the test corpus and the experiments we made on 1t; §4 shows the
results. §5 and §6 discusses further work and draws conclusions.

' Shostak [9] attributes this result to Oppen.



A COMPARISON OF DECISION PROCEDURES IN PRESBURGER ARITHMETIC 1-93
2 Background

We write =1 [ (FEr f) to mean [ is valid (invalid) in theory T A decision
procedure Tor theory T'is a total function d from formulae to the set {yes no},
having for any [ the properties of soundness d(f) = yes nnplies 7" |= [, and
completeness, T = [ implies d(f) = yes. An mcomplele decision procedure is
sound hut not complete.

2.1 Presburger avithmetic

Preshurger arithimetic is (roughly speaking) a theory built up from the constant
0. variables, binary 4, unary s, relations <, >, =, < > and the standard con-
nectives and quantifiers of first-order predicate caleulus.” The notions of term,
atomic formula and formula are formally defined in the nsual way (a granmar
s given in figure | for the quantifier-free part). In Presburger anteger arithmetre
(PTA). variables range over the integers. 1t was Presburger who first showed that
PIA s decidable [8]. Presburger rational arethoe e (PRAY) is defined analogously
and is also decidable [7].

The restriction of Presburger integer arithmetic to Peano numbers (e, to
non-negative integers) we call Preshurger natural arethmetic (PNA)

2.2 Related work

Some decision procedures for Presburger arithimetic are based on the idea of
quantifier elimination described by Kreisel and Krivine [7] - these are Hodes®
procedure for Presburger rational aritlunetic [6] and Cooper’s procednre for
Preshurger integer arithmetic [5]. There is also the Sup-Inf family of procedures
due to Bledsoe [1] and latterly improved by Shostak [9, 10].

The rational-based procedures are an attempt to overcome the complexity of
integer-hased procedures. It can he easily seen that there are formulae valid in
rational arithimetic and invalid in natural arithmetic and vice versa. For instance,
.20 = 3 s valid over the rationals, but not over the naturals. Also, Vo
Ivor o 2 as valid over the naturals, but not over the rationals. Therefore, we
cannot use a decision procedure for one of these two theories i the other, not
even as an Illl‘<n||||||l‘|«‘ decision |ll‘|n‘l'lllll‘-‘.

However, if some universally quantified PNA formula s decided valid by
Hodes” procedure (e, taking it to he a formula of PRA), then it must be valid

Multiplication of a variable by a constant is also Presburger: ne is treated as o 4

+ r, where ¢ appears n times, We shall write 1 instead of s(0), ete.
For the same theory and some related theories there are a few different terms used
For instance, Hodes calls Presburger rational arithmetic a theory EAR (“the elemen-
tary theory of addition on the reals”). Boyer and Moore [2] describe a universally
quantified fragment of Presburger rational anthmetic as linear arithme tic (althongh
i fact they work over the integers): that same theory sometimes goes by the name
Bledsoe real arithmetae.
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in PNA. That is, Epgra s iuplies = pya s, for the universally quantified formula
5. The reverse mmplication does not hold, and so Hodes™ procedure is not a
decision procedure for PNA.

This idea of applying decision procedures for rationals to the integer case is
al the heart of Bledsoe's Sup-Inf wethod [1], and can be seen as the start of
the tradition of tecomplete decision procedures. The tradition continued with
Shostak’s truproved Sup-Inf [9, 10]; he showed it could decide invalid formulace,
and so was indeed a decision procedure. However, the class of formulae for which
Shostak’s Sup-Inf” decides has not been characterized syntactically: it is not a
decision procedure for nniversally quantified PIA, but for some “semantically
characterized” fragment. '

Boyver and Moore too followed this track [2], although they reverted back
to Hodes™ procedure rather than using Sup-Inf. Their cholce was unsurprising
i sowe sense, sinee the Ngthm logic s quantifier-free, so the restriction for
soundness 1s vacnons. Somewhat curiously, Boyer and Moore conclude n that
same paper that efficiency of the DP is largely irrelevant in the wider setting
ol a heuristic prover: in that case why not use Cooper’s procedure, and have a
complete procedure to boot?! There is a question as to what degree negative
results from a decision procedure can be used in a heuristic theorem prover.
Some systems, such as CLaM  [3], can use this information, for example, in
controlling generalization, and other non-equivalence preserving heuristics. This
is undoubtedly true of other theorem provers.

3 Experiments

3.1  Generating Presburger formulae
We randomly generated a corpus of 10000 formulae of Presburger arithmetic.
O > [}

This was done using the graimmar shown in figure | to generate quantifier-free
formulae containing free variables (taken from a set of five symbols). Each rule
O o

was chosen with a probability given in the right-hand column.

3.2 Algorithms considered

In addition to Hodes™ procedure and Cooper’s procedure, we also used variants
of these, using a heuristic that quickly rejects mvalid formulae (we will call it
the QR heuristic).

The heuristic is as follows: to invalidate Vx.®(x) we show that a particular
instance @(c) is invalid. That is, we instanfiate all universally quantified variables
i a formula Vx.@(x) with particular ground values (say 0 and 100) in all ways.
In that way we get a quantifier free formula @(¢), for which validity is quickly
decided. This simple heuristic is obviously sound, but not complete. However,
* We emphasize that the Ngthm decision procedure is stronger than Hodes’ proce-

dure since it also has heuristics to deal with non-Presburger formulae by calling the
inductive part of the prover.
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Rule Probability
(formula) := (atomic formula) 0.75
(formula) = = (formula) 0.1
(formmla) := (formula) vV (formnla) |0.05
(formula) = (formula) A (formula) |0.05
(formula) == (formula) =

(formula) [0.00
1

(atomic formula) = (ll]lll = (term) (0.2
(atomic formula) == (term) < (term) (0.2
(atomic formula) = (term) < (lum) 0.2
(atomic formula) = (term) = (term) (0.2
(atomic formula) = (term) > (term)|0.2
(term) = (term) + (term) 0.2
(term) = s((term)) 0.2
(term) 5= 0 0.2
(term) o= (variable) 0.1

Fie. 1. Grammar of Preshorger arvithometic and probabilities assigned to rules for gon-

crating a corpis

our experiments showed that this heuristic could be very nnportant and very
nseful.”

Thus we compared the following four procednres:

Hodes  procedure. For PRAD Recall from §2.2 that this procedure s meomplet
even for the nniversally quantified fragment of PNA.

( 'ml'n‘l'\ |)I‘n('|'¢|lll'!' IFor I'NA. (('IHI]H'I' |’I'l‘.\‘('l|lt'l| two sieh I)I'Hf'l‘lllll"l‘.\': we nsed
the second, nnproved version [6]0 Besides, Cooper’s procedure is originally
detined for Presburger integer arithmetic, and in our experiments we uscd
o version. shghtly madified for PNAL)

DP-A . For a given formula try to disprove it nsing the QR hiearistic: if it
succeeds, the formula s invahd: otherwise. apply Cooper’s procedure; if
"unlbl‘l".‘* |\|‘-H'¢"|Ill't‘ says yes, the formmla s a theorem, otherwise s not

DP-B . Foragiven fornmlatey to disprove it using the QR henristic ifQR - sue
cevds, the formmula s vahid; otherwise, if the given formula s umversally
quantified, apply Hodes™ procedure: if the answer is yes, then the formula is
vahid if the answer 1s no or il a given formula is not universally quantified,
then apply Cooper’s procedure: if the answer s yes, then the formula s
vahid, otherwise the answer is no, and it is invalid,

Obvicnsly. this procedure could be used for all types of formulae (not pust aniversally
quantified ones): nsing this procedure we conld transforme (stimplify) a formula to
existentially quantificd formmla and tey 1o disprove it using Cooper's procedure
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4 Results

We ran the procedures described in §3.2 on each formula of the corpus, recording
whether the formula was valid or invalid, and CPU time taken to decide, subject
fo a time it of 100s. The following tables show the results with CPU time
meastred i milliseconds.”

4.1 QR heunristic contribution

OFf the 10000 formulae in the corpus, roughly 8000 were mvalid, the remaimder
valid. DP-A  using values of (0 and 100 was able to quickly reject all but 70
of these nvalid formulae. (We decided to take values 0 and 100 bhecause our
experiments showed that additional values were not significantly contributing to
the rejection rate, and on the other hand, using just 0, the heuristic rejected less
than 5000 formulae.)

4.2 CPU time distribution

Table 1 shows number of formulae handled by procedures within a given time
inferval, together with mean CPU time (in ms). Bach entry 1o the table is a
pair, the first part of which is the number of formulae in that time interval, the
secoud part is the mean time taken by the procedure. The totals column shows
the total number of formulae handled by each procedure within 100 seconds, and
the mean time for these fornmlae,

CPU time (1ms)
Procedure| < 107 10°-107T 107107 10°-10°] Totals
Hodes  [9213/27] 639/265[106/2546] 28/30120[9986/154
Cooper  [H678/48]3566,/292[509/2620[120/31372/9873 /650
DP-A 9361/18) 552/278] 51/2467] 17/29012] 9981/94
DP-B 9254/18] 605/286] 95/2298] 22/30189[9982/ 122

Table 1. Number of forinulae decided vs. CPU tune

4.3 Effect of mmuunber of variables

Table 2 shows that the mean CPU time spent by the procedures increases with
the number of variables. The number of formulae in the corpus containing a

G

Programs were written in Quintus Prolog; experiments were ran on a 32Mb Suan
SPARC 4.
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cortain number ol variables s shown, with a pair the first part. of which is a
percentage, the second is the mean CPU tine,

The percentage 1s of those formulac having a particnlar nimber of variahlos
completed within the 100 second time Tt Tn the D-variable case Hodes™ pro-
codure processed 95.9%. but for Cooper’s procedure this figure was 78.8%. This
diserepaney sectns o suggest that Cooper’s procedure degrades with inereasing
nunther of variables; however, notice that DP-A perforined better then Hodes'
procedure. Thus the correet explanation is that Cooper’s procedure is slower on
tnvalid formulac, an elfect seem more clearly in §4.5.

# variables/# lormulae

Procedure|0/598]1/3362] 2/3603]  3/1503] 1/693]  5/211
Hodes LOO/3] 100/ 17| 100/39]  100/130] 99.4/683{95.9/2883
Cooper [ 100/3[100/42[T00/ 1691986/ 120202 1/73608]78.8 /8306
DP-A T00/GTO0/T6] 100 /221 99.9/17 1] 99.0/315]95.9/ 1132

DP-B T00/7[T00/ 17| T00/27] 99.97202] 98.7 /44394 .5 /1973

Table 2. % completed /CPU time (ms) vse number of variahles

4.4 Effect of size of formula

' '||i"i¢'||l') ol Hodes™ and ( 'miln'l".\ |ll"l('t'l|lll'l' s ;;u\‘v'l'lnw' nol ‘ill,\l ||)‘ propo
stional stractnre hut by term stencture too, To mvestigate this aspeet ol per
formance, we define the size of a formula/term as the s of the sizes of s
pnediate sublformalac/subterms plus one, taking the size of variables and con
stants as 0, Table 3 shows the resnlts

Cooper's procedure s most exposed here: the pereentage of formmlac decided
within the tie Tt deops deammatically as the size inereases. Hodes™ on the
other hand fares quite well. Ouee again though, the hetter performance of DP
A reveals that Cooper’s procedure is stragglhing with imvalid formumlae which are
more castly dealt with by the QR hiearistie

4.5 Effect of validity

Fable 4 shows CPU tiime spent by the procedures according to validity of
formmla (constdering only those formulae decided by all procedures within the
tie Tt )

568 formulac from onr corpus were treated by all procedures— so, 132 formulae are
ssing” in table 40 However, onr QR henristic rejected 107 of them, and thus at

most 25 formulae conld change the first two colmmns in the table 4 we had taken
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Size/# formmlae

Proc. [T-T0/8785]1120/ 1029121 30/ 150] 31 40/29] 41-50/5] 516072
Modes | 100/35]  99.7/687]97.3/2772] 79.3/4661] 80.0/2430[100/1560
Cooper| 99.8/225] 93.7/3238| 80.0/8655]5 'z/lm 60.0/24690]50/38530
DP-A 100724 99.3/460] 94.7/1059] 93.1/3156] 80.0/4320] 1007295
DP-B [00/31] 99.2/647] 94.0/1300 32.5/572 80.0/4537] 1007310

Table 3. C('PU time vs. size

The first. column pertains to fornmlae valid in both rational and natural

S the second is for those invalid in the rationals and valid i the

artthimetic;
naturals; the third for those invalid in both theories. Notice that those in the
second colmn would not be found to be valid formulae of natural arithmetic
by Hodes” procedure. Note that the henristic versions dramatically improve the
performance of Cooper’s procedure in the invalid cases.

We considered the procedure DP-B | anticipating that it would take advan-
fage of Hodes™ procedure on formulae valid hoth in PRA and PNA. We expected
that these gains would outweigh Tosses in other cases and therefore we expected,
in general, DP-B  to be faster than DP-A . However, surprisingly, it turned out
that Hodes™ procedure performed worse than Cooper’s procedure 1n this group of
formmlae. Consequently, DP-B - failed to improve npon DP-A in any of groups
of formulae according to validity. Of course, DP-B - cannot exploit Hodes™ proce-
dure in the case of forrulae on which Hodes™ procedure returns no, since Hodes'
procedure is incomplete; in such cases, Cooper’s procedure must be called, and
time spent in Hodes™ procedure is wasted.

4.6  Sumnnary of results

On onr corpus Cooper’s procedure performed better than Hodes™. on valid for-
mulae, but it was much worse on mvahd formulae. However, (hi\‘ is mitigated
entirely by using the QR heuristic. Our conclusion then is that the combination
of Cooper’s procedure and QR performs better than Hodes’ |')l‘(')(‘t‘(|lu'f".

higher time lmit.

(Among the missing’ formulae, there are formulae decided by one decision pro-
cednres and not decided by others, and some of them weren’t decided by neither
procedure. Generally, these formulac are formulae of large complexity, but it is a
very difficult task to give some precise characterization of themn — such a character-
ization would have to involve some deeper semantic knowledge. )

%

Out of 756 formulae valid in both rational and natural arithmetic 330 are ground,
311 with 1, 51 with 2, 29 with 3, 27 with 4 and 8 with 5 variables.
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Validity l:[v/,(,.\ Pl pra PlEpra P Total
Eeaa FlEpva FlErya P
[# formulac| s 1214l 7898] 986s)

Hodes 117 256 S 106
Cooper 33 204 TH8| 634
DP-A 66 267 19 77
DP-B 148 23 hH8 122

Table 4. CPU times according to validity /invalidity of formula

5  Future work

It would be interesting to compare Hodes™ and Cooper’s procedures with Sup-Inf
procedures,

The assigmment of probabilities to the rales of the grammar for Presbhurger
formmulae was chosen somewhat arbifrarily —we have yvet to investigate the ef-
feet these parameters have on o validity, time to decide etes A quiekly computed
measure of expected run time wight he useful ina heuristic theorem prover.
One can imagine pursaing a line of cnguiry similar to that in the propositional
satisfiability commumnity.

According to results of Boyer and Moore [2], an essential role of using an
arithimetic decision procedure is to contribute to the proofs of deeper theorems in
other theories (not just arithimetic). We have done some prelininary work in this
divection i the CLaM  proof-planning system [3]. Transformation of a problem
to a Preshurger formula should be done by a commmmication module. We nsed
an extension of our procedure DP-A - which could handle defined arithmetic
functions (double, half. mmus, p) and relations (odd, cven). For that purpose, we
use rewrite rules, which, for instance. using the theorem Vo Yy . double(r) = y <
y = 2w it s sound to rewrite F(double(x)) into Yy.2e = y = F'(y). Sinilarly,
Va.cven(double(x)) can be rewritten to Yo Ju¥o 20 = v = » = 2u. Notice
that these translations move ontside the quantificr-free fragiment of Presburger
arithimetic, so we are using DP-A - inan arca where Hodes™ procedure would
be unsound, and so useless. Preliminary results are enconraging, but much more
work needs to be done. We also want to deal with non-arithmetie functions (e.g.,
length of a list), using more powerful techniques: our aim s to explore Bundy's
idea of proof-plans for normalization [4].

6 Conclusions

The effectiveness of DP-A - (and hence any elann that Cooper’s procedure s
useful in tandem with the QR heurnistic) must be offset by the fact that 80%
of the corpus = invalid. Although Cooper’s procedure outperforims Hodes™ pro-
cedure an valid formulae, it did so to a lesser degree than DP-A - ontperformed
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Cooper’s procedure on invalid formulae. Furthermore, another factor must he
borne in mind. The corpus we generated did not contain many large constants,
and the presence of these in formulae will often slow both Hodes” and Cooper’s
procedure, and hence DP-A . Note that the Sup-Inf family of procedures is not
affected in this way.

We need to be cautious when advocating the use of DP-A  more widely—
more experiments on other corpora are required, especially on “real problems”
generated during (say) inductive verification proofs. With these caveals, we draw
the following conclusions from the corpus we used:

— Cooper’s procedure was faster than Hodes™ procedure on valid formulae; it
was an order of magnitude slower on invalid formulae.

— Many invalid universally quantified formulae can be identified simply and
quickly by checking ground instances over a small set of values.

— Cooper’s procedure with the simple QR heuristic oulperformed Hodes’ pro-
cedures. This is a startling result. It goes against the grain of much work
and commentary made on decision procedures in the past 25 years.

— When efliciency is comparable, it 1s highly preferable to use a decision pro-
cedure in a heuristic theorem prover rather than an incomplete decision
procedure. Hodes” procedure (which is incomplete for quantifier-free PNA)
fails to prove many PNA theorems; for such theorems much extra work may
be incurred in trying other techniques (e.g., induction). We speculate that
for most invalid PNA conjectures, even a slow decision procedure will be
faster and more robust than heuristic techniques.

— Worst case analysis of complexity may be misleading: experimental evalua-
tions can be useful.

On the basis of these experiments, we conclude that for quantifier-free Pres-
burger arithmetic over the natural numbers, Cooper’s procedure augmented with
a ‘quick reject’ heuristic is superior to Hodes” procedure. This is a startling re-
sult that questions much of the perceived wisdom in the automated reasoning
community.
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Abstract. In this paper the IDTS (Integrated Debugging, Testing and
Slicing), method is presented for the algorithmic debugging and fune-
tional testing of Prolog programs. This method integrates Shapiro’s In-
teractive Diagnosis Algorithm with the Category-Partition Testing Method
and a slicing technique. Shapiro’s original method demands a lot of user
interactions during the debugging process. The IDTS method can avoid
irrelevant questions to the user by categorizing input parameters, and
match them against test cases and test database. In addition, a shic-
ing method is used to compute which parts of the program are relevant
for the search. The IDTS method has since been used in a large ECG
classifier program and in an interactive learner. '

1  Introduction

In this paper we present a method, called IDTS (Integrated Debugging, Test
ing, and Slicing) for the algorithimic debugging and functional testing of Prolog
programs. This method not only integrates Shapiro’s Interactive Diagnosis Al-
gorithi [12] with the Category Partition Testing Method (CPM) [10] but a
common slicing technique (11151 IDTS can improve the efficiency of the algo-
rithmic debugging method for bug localization by using given test specifications
and test results. The method can avoid irrelevant questions to the user by first
categorizing input parameters, and then matching these against test cases in
the test database. In addition, a slicing method is employed that is based on a
program dependence graph to compute which parts of the program are relevant
in the search, thus further improving bug localization. In the method presented
the test database is modified during the debugging of a program and the test
specification is improved. In this way our technique can reasonably be considered
as an integrated method for debugging and functional testing of logic programs.
The basic concept behind IDTS is similar to the GADT (Generalized Al-
gorithmic Debugging and Testing) system given in [4) [7). The main difference

P-103



P-104 GABRIELLA KOKAIL, LAszLO HARMATH, TIBOR GYIMOTHY

between the GADT and the IDTS is that the GADT has been applied to im-
perative languages and the IDTS to logic programs.

As a large scale application the IDTS method has been used in : CG
waveform classifier method calle CG [8]. P}

The method has been also int€zrated in an interactive Inductive Logic Pro-
gramming [9] learner called IMPUT [1].

In the remainder of this paper we furnish a brief overview of the IDTS
method. Later short example is presented in Section 3. Then finally in Section
4 a summary and comments on future work are given.

1.1 The IDTS System for Prolog programs

IDTS combines Shapiro’s algorithmic debugging technique [12] with the CPM
functional testing method [6] and also a program slicing technique [11] to make
it an even more advanced debugging system. The overall structure of the system
more or less the following;:

; Specifications of Buggy | | Shicing
| Categories | Program i Parameters
i ; {

A
Prolog i\

CPM Description
‘ Program
7 | N
| Generation of Test \ !
Database Slicing
| Inival Test Database
& e ! Slice over the
‘ Testing ! Proof Tree
|
some Evaluations
Maodificd
| Test Database
——
N A
Debugging | \
| \
= \
\
e e =l = — . N
[ TestDessripion || clickaple Bxecution || Source Code |
1 | S it i
‘Damhasv Mamgenent | i Tree || Edirhiterace Browsimg
|
, [Graphical User Interface

Fig. 1. The structure of the IDTS system

The algorithmic program debugging method introduced by Shapiro can iso-
late an erroneous procedure if a program and an input on which it behaves
incorrectly is given. Shapiro’s model was originally applied to Prolog programs
to diagnose the following three types of errors: termination with incorrect out-
put, termination with missing output and nontermination. A major drawback
of this debugging approach is the great number of queries put to the user about
the correctness of intermediate results of clause calls.
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The main idea behind IDTS is the following. During the debugging of a
program the user has to answer many difficult questions. If the program has
already been tested, the test results of the procedures of the program can be
directly applied to the debugging process without consulting the user. In addition
the slicing method computes the relevant part of the proof tree.

1.2 Shapiro’s Method for Algorithmic Debugging

Shapiro’s algorithms can isolate any erroneous clause, given a program and an
input on which it behaving incorrectly. The algorithm traverses the proof tree
of a program in different ways and ask the user about the expected behaviour
of each resolved goal.

The bottom-up method traverses the proof tree in postorder manner and asks
the oracle about the correctness of the computed values of the nodes. If the result
at a node is incorrect and all sons of this node are evaluated correctly results the
algorithm identifies the clause applied to this node as a buggy one. The query
complexity of this method is linear in the size of the tree.

The second method investigates the nodes in a top-down manner. If the result
computed at a node is evaluated correctly by the oracle then the algorithm does
not visit the nodes inside the sub-tree. Using this approach the query complexity
can be reduced to a linear dependence in the depth of the proof tree.

The most efficient, technique is the divide-and-query strategy which requires
a number of queries logarithmic in the size of the proof tree. The divide-and-
query algorithm splits the proof tree into two approximately equal parts, and
makes a query for the node at the splitting point. If this node gives an incorrect
evaluation the algorithm goes on recursively to the sub-tree associated with this
node. If the node’s answer is correct its sub tree is removed from the tree and a
new mid-point is computed.

1.3 The CPM Testing Method

The CPM method for imperative programming languages has been defined in
[10], with an extended version presented in [4]. A formal description of the CPM
for logic programs can also be found in [6]. Informally this method can be out-
lined as follows: During the functional testing the programs (procedures) cannot
be tested for all possible properties of their parameters. Hence the tester’s first
task is to define the critical properties (categories) of the input parameters which
will be investigated in the testing process.

The categories are divided into disjoint classes called choices which presume
that all the elements within a choice have an identical observable behaviour with
respect to correctness. Once the categories and choices for a program have been
defined all the possible test frames can be generated, each test frame covering
exactly one choice from each category. In general there may be many superflu-
ous test frames among the generated ones, namely property combinations that
have no real relevance. These frames can be eliminated by associating selector
expressions with the choices.
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1.4 The Slicing Method

The program slicing part of IDTS is based on the annotation inference technicue
of [2]. Using this technique an annotating specification of directionality (input.
output) can be automatically generated for the functional part of a logic program.
The user may define the slicing point like the suspected buggy position in the
program to start the slicing process.

From an annotation a dependence graph is constructed for ihie logic program

[3]. A proof (refutation) tree is produced for a buggy program and using the
dependence graph the tree is sliced, the seginents having no obvions influence on
the visible symptom of a bug being removed. The algorithmic debugger traverses
the sliced proof tree only, thus concentrating on the suspect part of the program.
The annotation of the program is helpful for preparing the test database as well,
where the user may provide test cases on input argimunents of the annotated
program.

During the debugging the IDTS svstem does not investigate any node of a
proof tree which is not in the sub tree determined by the slice of the buggy
position.

1.5 The graphical user interface
The GUI supports the following activities

e clickable execution trees: In each step of the debugging process the GUI labels
one node of the proof tree, the intended behavionr of which the debuggeer
needs to know to carry on with the debugging process. Nodes can be hidden
and extended. The user can answer by pressing one of the shown options
correct, incorrect or cancel.

e source code browsing: The static-call graph shows which predicates could
be invoked by a given procedure. With the help of this window a static
program structure is displayable to a complement the dynamic proof tree
window. The information-retricval display shows the line munber and the
clauses matching the pattern selected by the user.

o editor interface: By pressing a mouse button over a node of the proof tree
an editor window opens and displays the part of the Prolog program which
corresponds to the node, the source code beeing editable also.

e test description and database management: All data is utilised by IDTS can
be stored and loaded with a few mouse clicks.

2 Small Example in IDTS

In this section we demonstrate the operation of IDTS in finding a false clanse in
a buggy program.
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2.1  The program compute
To illustrate how our integrated debugger works. a program compute (borrowed
from [11] and listed in Appendix) was chosen which computes the difference
between the lists in the predicate complement and the s of their elements by
the predicate sigma. Let us, sav, introduce the following bugey version of ¢lause
delete:
(C8) delete(X,[Y|Z],[XIU]) :- delete(X,Z,U).

instead of the original clause
(C8) delete(X,[YIZ],[YIU]) :- delete(X,Z,U).

The CPM description for the predicates member and delete is listed the Ap
pendix 120 The deseription begins with the line type (preducate _name(...)) which
defines whether the parameters of the predicate name are printed or not dur-
ing the debugging sessions. The categorv-partition specification for predicate
member contains two categories number_of_elements and relation. The first cate
corv is divided into three and the second into four disjoint classes. For example.,
category relation expresses the view that the munber in the first argiment of
member is greater, smaller or equal to the first element of the second argument.
The fourth choice none is nsed if the list in the second argmment is cmpty I
cach case searching functions are simple Prolog, facts.

2.2  'The questions asked in the debugging process

The most complex part of the svstem s the algorithmie debugging phase. Lot
ns suppose that the top-down traversal alporithim is selected to demonstrate the
usual questions asked by the svstem. In onr example the system first builds up
the proof tree (see in Fignre 2) for the goal:

compute([1,2,3],(3],C,S).

If Shapiro’s top-down method is emploved (without CPNE and slicimg) he
following questions are invoked to identifv the bugpey clanse delete

1]

the goal sigma([(1,2,3],[(3],9) (y/n)7 y

the goal complement([1,2,3],(3],[3,3]) (y/n)? n
the goal member(3,[1,2,3]) (y/n)? y

the goal delete(3,[1,2,3],(3,3]) (y/n)7 n

the goal delete(3,[(2,3],[3]) (y/n)? n

s the goal delete(3,[3],[]) (y/n)? y

The false clause:

delete_ver(3,[2,3],[3]) :- delete_ver(3,(3],[1])

wn

n

wu ou

— O b4 4 4

If Shapiro’s method is combined with the CPM technigue the following ques
tions will be asked

Is the goal sigma([1,2,3],(3],9) (y/n)7? y

Is the goal complement([1,2,3],(3],[3,3]) (y/n)? n
Is the goal member(3,[1,2,3]) (y/n)? y

Is the goal delete(3,[1,2,3],(3,3]) (y/n)? n

Is the goal delete(3,(3],[]) (y/n)? y
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program(] 12,3131 3319

P T S

compute(] 12333319 prm¢[3,3]) print|9])

T

complement([1.23] 31033

sumi(]1,2.3],6) sum([31,3) Qis 613 } 3 Fodelete(3] 123)03.3D  complement([ 331,331

-~

sum([2.3],5) 6is S5 sum([§.0) 3is 013 miember([3..2.3)]) delete( 3023113
sum(llw,\ 342 member( [3,[3]) delete(3,[ 311D
suny([1.0) 3is 043

not investigated using Shapiro's method " onotinvestigated using CPM- £ not investigated using Slicing

Fig. 2. The proof tree of the example

But, if the slicing method is used the following three questions are enough
to identify the bug:

Is the goal complement([1,2,3],[31,[3,3]1) (y/n)7 n
Is the goal delete(3,[1,2,31,[3,3]) (y/n)7 n
Is the goal delete(3,[31,[1) (y/m)7 y

3 Conclusion, Further Work

In this paper a method has been presented which combines Category Partition
Testing, the program slicing method with the algorithmic debugging techniques
introduced in [12]. A similar method was presented in [4] to diagnose imperative
programs but as far as is known the IDTS method presented in this paper is
unique in the context of logic programming. This integrated system can be used
in the testing and debugging of Prolog programs.

The first version of the IDTS method has been fully implemented. However,
due to the poor implementation technique the computation of dependence graph
required for slicing is very slow, hence we have embarked on a new implementa-
tion of this part. 2
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4 Appendix

4.1 The compute program

program(L1,L2,C,S) := compute(L1,L2,C,S), print(C), print(S).

compute (L1,L2,C,S) :- sigma(L1,L2,S), complement(L1,L2,C).

complement (L, [],L).

complement (L, [H|T],U) :- member(H,L), delete(H,L,L1), complement(L1,T,U).
member (X, [X|T]).

member (X, [YIT]) :~ member (X,T).

delete(X, [XIT],T).

delete(X,[Y[Z],[X|U]) :- delete(X,Z,U).

sigma(L1,L2,S) :- sum(L1,S1), sum(L2,52), S is S1+S52.

sum([],0).

sum([X|T],S) :- sum(T,S51), S is S1+X.
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4.2 Test description for the compute program

type (member (+,+)} .

type(delete(+,+.+)).

YA first category for member/2 : number_of_elements
choice_of (member,2, number_of_elements, empty).
choice_of (member,2, number_of_elements, one).
choice_of (member,2, number_of_elements, more).

yA second category for member/2 : relation
choice_of (member,2, relation, none).
choice_of (member,2, relation, greater).
choice_of (member,2, relation, less).
choice_of (member,2, relation, equal).

% first category for delete/3 : number_of_elements
choice_of(delete,3, number_of_elements, empty).
choice_of(delete,3, number_of_elements, one).
choice_of(delete,3, number_of_elements, more).

% second category for member/3 : membership
choice_of(delete,3, relation, none).
choice_of(delete,3, relation, greater).
choice_of(delete,3, relation, less).
choice_of(delete,3, relation, equal) .

A searching functions:

empty (member,2,_,[]).

one (member,2,_,X) :- length(X,L), L ==

more (member,2,_,Y) s~ length(¥,L), L 3.

none (member, 2, _, [1).

greater (member,2,X,[Y{_]) 2= X3 Y,

less (member,2,X, [YI_]) - X < Y.
equal(member,2,X,[Y|_]) = X =Y.
empty(delete,3,_,[],_ ).

one(delete,3,_,X,_) :- length(X,L), L ==

more (delete,3,_,X,_) := length(X,L), L >1.

none (delete, 3, _,[1,_).

greater(delete, 3, X,[Y|_],_) = X > Y.

less(delete, 3, X,[YI_1,.) = X e Y,

equal(delete,3, X,[YI_],.) =X =Y,
A properties:

p_empty (member, 2, empty, X) 1= member (empty, X).
p_empty_del(delete, 3, empty, X) :- member(empty, X).
% selectors expressions:

cond (member, 2, none, X) :— !, p_empty(member, 2, _, X).
cond (member, 2, greater, X) :- !, \+ p_empty(member, 2, _, X).
cond (member, 2, less, X) :- !, \+ p_empty(member, 2, _, X).
cond (member, 2, equal, X) := !, \+ p_empty(member, 2, _, X).
cond( delete, 3, none, X) :— !, p_empty_del(delete, 3, _, X).
cond( delete, 3, greater, X) :- !, \+ p_empty_del(delete, 3,_, X).
cond( delete, 3, less, X) := !, \+ p_empty_del(delete, 3, _, X).

cond( delete, 3, equal, X) :- !, \+ p_empty_del(delete, 3,_, X).
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Abstract - A possible approach to resolving the implicational problem for generalized data
dependencies in relational data model is presented in the paper. The approach is based on the
automatic reasoning method. By means of generalized dependencies the other dependency
types, such as: functional, multivalued, join, implied and inclusion, can be expressed.

1. Introduction

.

A mechanism for generalized representation of various data dependency types, such
as functional (fd), multivalued (mvd), join (jd), implied (imd) and inclusion (id) de-
pendencies, has been developed in the relational data model theory. The initial sup-
position was that all the data dependencies (i.c. "rules" which hold among data) can
be represented, in unified manner, by one, or more symbolic data templates, satisfy-
ing certain criteria, according to defined interpretation rules for such symbolic tem-
plates. On the basis of that supposition, the term of generalized data dependency has
been introduced. so as to represent the other dependency types in the same way. One
of the important questions, arising when new data dependency type is introduced. is
how can it be stated if a data dependency is a logical consequence of a given set of
data dependencies. This problem in relational databases is known as the implicatio-
nal problem.

At the beginning, the terms of: tableau, as a symbolic data template, generalized de-
pendency (gd) and its interpretation are defined without explanations, because they
arc considered as already known. In the central part of the paper, it is presented a
possible approach to resolving the implicational problem for gds. By identifying the
testing procedure for the implicational problem for gds. it is established at the same
time a way of testing the implicational problem for all the specific data dependency
types which can be formalized by means of gds. The proposed approach considers a
usage of the Automatic Theorem Proving System (ATP), based on the first order
predicate calculus and the resolution procedure with variable searching strategies
(see [5]).

The reader is supposed to be familiar with fundamentals of the relational data model
theory on the level of [1], [4] and [8] (particularly with the terms of gd and implica-
tional problem) and the term of resolution procedure, on the level of [6].

2. Tableau and Generalized Data Dependency

Definition 1. Let an attribute set R, infinite but countable set of individual symbols -
variables Sym = {x, y, z, w, x;,..., X,..., x,'.‘..‘ X,....} and a tuple (n-tuple) of symbols
I defined by mapping /: R—»Sym be given. Tableau over R, denoted by t(R), is a
finite set of tuples of symbols: ©(R) = {/, | /,; R—>Sym}. []
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Definition 2. Let <U be the universal set of attributes, Dom = | Jdom(4) be the
AelU

union of all the domains of the attributes from U, g: Sym—Dom be any function,

representing a mapping from symbols to values and T(R), R < “U, be a tableau.

e Interpretation of a tuple of symbols | € <, denoted by g(/), is a tuple of values, i.e.
a function g(/): R—>Dom, such that for each 4 € R, (g(/))(4) = g(I(4)) holds.

e Interpretation of a tableau T, denoted by g(t), is such a relation over the set of at-
tributes R, that g(t) = {g(/) |/ e =}. O

Like the term of the projection of a relation to an attribute set, the term of the projec-
tion of a tableau ©(R) to an attribute set X, X < R, denoted by my(t), is introduced.
Thus, mx(t) is the set of tuples my(t) = {/[X] | / € t}, where /[X] represents the
restriction of the original tuple / to X

In the following text, the term of gd is introduced. Each gd can be either a tuple de-
pendency, or an equality dependency. By the next definition, a syntax of the tuple de-
pendency is established. Then, its semantic is defined through the interpretation over
a relation ». After that, the term of equality dependency and its interpretation over a
relation are introduced, too.

Definition 3. Expression of the form <t(R), v'(X)>, X < R < “U, where T(R) = {/; |
ie{l,.. . k}}and v'(X) = {//|je{],...,m}} are tableaux, such that:

(VA; e X)(VI € ©)(3B € R)([/141] € mx(7))
holds, is a tuple dependency or generalized T - dependency (tgd). O

Let <t(R), T'(X)> be an arbitrary fgd. If it is |t'(X)| = I, then <t(R), T'(X)> will be
written in the form <t(R), (xp,...,x,)X)>, i.e. <t(R), I(X)>, where [ = (x;,..., Xp) €
T'(X). If the equality X = R holds, then <t(R), T'(R)> is called full tgd (figd). Oppo-
sitely, if it is X R, such fgd is called embedded tgd (etgd).

Definition 4. Let the set of symbols Sym and the union of all domains Dom be given.
A relation r(R) satisfies tgd <v(R), T'(X)>, which is denoted by r |= <t(R), T'(X)>, if:
(Vg: Sym—>Dom)(g(t) < r = g(t') < nx(r)). O

Definition 5. Expression of the form <u(R), E>, where w(R) = {/; | ie {I,...k}} is a
tableau and £ = {Eqi(/lp', A |ie{l,..,m}} is a finite set of "equality" predicates,
such that:

(Vie{l,.,m})@A, BER)(A, € my(r) A A, € mz(t))
holds, is an equality dependency or generalized E - dependency (egd). O
If tableau symbols /1,, and A, "of a predicate Eq' (2,,, Aq ") e E are used over the same
attribute, then the predicate Eq (ﬂ.p Ay ) is presented in the form Egq A(ﬂ.p Ay "), where

A is the attribute, for which {1,', 1,/ Y= 74(t(R)) holds. If for an egd <u(R), E> |E] =
1 holds, then it will be written as <‘|:(R) Eq(4,, A, >, i.e. <a(R), EqA(/l,, A N>.
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Definition 6. Let the set of symbols Sym and the union of all domains Dom be given.
A relation +(R) satisfies egd <t(R), E>, which is denoted by » |= <t(R), E>, if:

(Vg: Sym—>Dom)(g(v) © r = (VEq(A,, 4/) € E)g(4,) = g(4,))). U

Detailed information, concerning the terms of tableau, gd and ways of representing
the other dependency types by means of gds can be found in [1], [2], [3], [4], [7] and
[8].

3. Implicational Problem for Generalized Dependencies

Definition 7. Generalized dependency vy is a logical consequence of the set of gds I',
defined over the attribute set R, R  “U, which is denoted by I |= v, if:

Vre SATR)(r =T =r|=7y)

holds, where SAT(R) denotes the set of all the relations over R, and r |= I" denotes the
fact that the relation r satisfies all the dependencies from I'. []

To resolve the implicational problem for a given set of gds I" and an arbitrary gd vy
means to establish if I' |= y holds. It is not practically possible to test the implicatio-
nal problem I" |= y by exact applying of Definition 7, i.e. by systematic generating of
all the relations from SA7(R) and checking the implication » |= I" = r |= v, because
SAT(R) is, in most cases, the set of high cardinality and it can be even infinite.
Therefore, the other methods have to be applied so as to resolve the problem.

According to the nature of gds, it is concluded that for the automation of the test I" |=
v. the resolution procedure can be applied. Therefore, the set I and the dependency y
will be represented by appropriate predicate formulas.

4. Formalization of the Problem by Means of the First Order
Predicate Calculus

In order to automate the condition 1" |= y checking, the ATP System has been used,
which is based on the OL - resolution with marked literals [5]. For the sake of ATP
applying, it is necessary to introduce an appropriate formalization for 1gds and egds,
which is based on predicate formulas,

So as to formalize a gd, a predicate representation of a tableau ©(R) = {/,,....[,}
should be introduced. The fact that the tuple of symbols (i.e. variables) belongs to
©(R) will be denoted by means of a predicate named 7. Namely, the predicate for-
malization for [ = (A,;,...,.A4) € tis P(A;,...,.A44), i.e. P(I), where A, (i € {/,..., k}) de-
note the predicate calculus variables, corresponding to those symbols from Sym,
which have been used in t. Hence, t(R) is represented by the predicate formula:

Pl A ... ~n P(1,). (n

Lety be a 1gd <t(R), I(X)>, ©= {/,....1,}, X < R, Sym(y) be the set of all symbols, ap-
pearing in y: Sym(y) = {A;,.... 4,}, and /(R) be an extension of the tuple /(X), de-
fined in the following way:



P-114 [VAN LUKOVIG, PETAR HOTOMSKI, BILJANA RADULOVIG, IVANA BERKOVIG

(LR)X] = IX) A (VA € RAX)(I(A) € Sym \ Sym(y)).

According to Definition 4, i.e. the fact that for each interpretation g; the implication
g2i{(t(R)) < r = g(I) € mx(r) must hold, a formalization for <z, / > is introduced by
the following predicate formula 7(y):

() : VANV A)...(VA)EAgen)... GA)(PUD) A ... A P(I)) = P(L), @

where Var(7(y)) = {41, Az,..., 4.} is the set of all distinct variables, appearing in 7(y)
and Sym(<z, [ >) \ Sym(y) = {Ag1,..., 4} is (possibly empty) set of symbols, used to
make the extension /,(R) from /(X).

For each fgd <t(R), T'(X)> there is an equivalent set of fgds of the form <t(R), /(X)>.
Let ©'(X) = {I;',....I"}. Logical equivalence of the sets {<t, /;>,....<t, I,">} and
{<t(R), T'(X)} directly follows from Definition 4 and Definition 7. Therefore, a tgd
of the form <t(R), T7'(X)> is formalized by using the equivalent set of fgds {<rt,
-

Let y be an egd <t(R), Eq(Ai, 4)>, © = {l;,....I,}. According to Definition 6, i.e. the
fact that for each interpretation g;, g(t(R)) < r = g(4;) = g(4,) must hold, a formali-
zation for <t(R), £q(A;, A;)> is introduced by the predicate formula E(y):

E(y) : (VA)(VA2)...(VANPUD) A ... AP(L)) = A= ), ©)

where Var(E(y)) = {41, A2,..., A} is the set of all distinct variables, appearing in E(y).
With respect to Definition 5, 4;, 4; € {4,,..., 4,} must hold.

As well as for fgds, it can be proved that for each egd <t(R), E> there is an
equivalent set of egds of the form <t, Eg(4;, 4)>, such that the formalization of <,
E> is reduced to the formalization of the appropriate set of egds, which includes a set
of predicate formulas, given by (3).

If the resolution procedure does not allow the operating with equalities, the formula
E(y) is transformed into the form:

E(y) : VANV A2)...(VAN(PUD) A ... AP(1) = R(4i, 4), @

where the predicate R(4;, ;) means that A; and 4; are equal and a new formula R(y)
is introduced to represent the equality predicate R(A,, 4,):

R : VAV AR, 4) = (VA)...(V A )P (A, Aty Ay Aittyenns M) =
Pty Aty Ay Aittsees A1), (5)
such that indexes i and j correspond to attributes A and B, for which A, € m,(t) and

4, € mp(t) hold. The meaning of the formula R(y) is that if equality R(4;, 4;) holds,
then each appearance of the variable A; is replaceable by 4; and vice versa.

On the basis of Definitions 4, 6, 7 and previous considerations, it follows the conclu-
sion formulated by the next theorem.



A TECHNIQUE FOR THE IMPLEMENTIG PROBLEM RESOLVING FOR. . . P-115

Theorem 1. Observe the set of gds I' = {y,,..., y,}, n = 1, and gd v, such that all the
Igds and egds are of the form <t(R), /(X)> and <t(R), Eq(A;, 4;)>, respectively. Let
FI) = {FI,.F Faryeow Fad, 0 < k< |R|, be the set of initial formulas -
assumptions, formed on the basis of I', such that:

T(y;), vy;: 1is 1gd
E(y;), vi: is egd

holds. The next k formulas F,,,..., F are of the form R(y;), given by (5). Let /' be
the formula which is built with respect to y, where: /7= 7(y) if y is tgd, or F'= E(y) if
y is egd. Beside that, formulas 7,..., /*, and F satisfy the following condition:

(VF;, Fj e F) O {F})(i # ] < Var(l) n Var(F) = @).
The implication I' |= v holds if and only if /" logically follows from F(I"). [J

Finally, it should be stated that the formulas: 7(y), given by (2), and £(y), given by
(3), follow the same logic as the original definitions of fgd and egd, shown in [4].

S. Implicational Problem Testing by Automatic Reasoning Method

According to the resolution theorem and Theorem 1, the test of the condition I' |= v,
where I = {y,...., y.}. is performed by disproving procedure, on the basis of the set of
initial asgumptions F(I') and the negation of the conclusion —/*. In that case, the
theorem that should be proved by ATP System is of the form:

F(I) > F,

To prove the theorem, the clauses should be built from the set of assumptions F(I")
and negation —/. They represent the input for ATP. Beside that, two additional
input parameters are: (i) maximal searching deep and (ii) maximal clause length.
With respect to the resolution theorem, there are three possible outcomes from ATP:
(a) "positive”: an empty clause has been reached, which means that the assertion /'
holds. According to Theorem 1, I |= y holds, too; (b) "negative”: the empty clause
has not been reached and there are no more possibilities for new clause generating. It
means that the conclusion /< cannot be derived from F(I'). According to Theorem 1,
we conclude I' |= y does not hold; (¢c) "uncertain”: the empty clause has not been ob-
tained, whereas maximal searching deep and maximal clause length have been
reached, or memory resources have been exhausted.

Example 1. Let the implicational problem {A->B, BC—-D} |= AC—-D be given. It
represents the pseudo-transitivity rule for fds. Fds A—-B, BC—D and AC—D are
generalized by egds <t,, Eqp(y,, v2)>. <ta, Eqp(ws, w,)> and <ts, Eqp(ws, we)>, re-
spectively, where tableaux t,, t; and t; are of Fig. 1.
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uyll4A|{B|C|D ,|A|B|C|D )| A|B|C|D

X1 | Yi | 21 | W X3 | V3| Z3 | W3 Xs | Vs | Z5 | Ws

X1 | Y2 | 22 | W2 Xq | V3 | Z3 | Wy X5 | Ve | Z5 | Ws
Fig. 1.

Predicate formalization of the mentioned fds is F(I') = {F}, F>, F3, Iy} and F, where:
o F,=E(A—>B):

(Vx)(Vy)(Vz) (YW ) (YY) (V) (Y W) (PCer, Y1, 21, WNP(X1, Y2, Z2, W2)=R(Y1, ¥2))
o F,= FE(BC—D):

(Vx3)(Vy3)(Vz3)(Yw3) (Vi )(YWa)(P(xs, V3, 23, Ws) A P(xy, y3, 23, wg) = R(ws, wy))
e« F=EAC—D):

(Vxs5)(Vys)(Vzs)(Vws)(Vys)(Ywe)(P(xs, ys, zs, Ws) A P(xs, Vs, Zs, Ws) = R(Ws, W)
o F;=R(A—B):

(YY) RY7, yg) = (Vx)(Vz7) (YW P(x7, 7, 27, W7) = P(x7, Vs, 27, W7)))
o F,= R(AC—D) = R(BC—D):

(Ywg)(Ywo)(R(ws, wo) = (Vxo)(Vyo)(Vzo)(P(x0, Yo, Zo, Ws) = P(xg, Yo, Zo, Wo))).

On the basis of F}, F,, F3, Fy and —F, the following clauses are formed:
. =P(xy, yi, 21, wi) vV 2 P(x), V2, 22, wo) V R(v1, ¥2)

. =P(x3, V3, 23, W3) vV = P(xy, V3, Z3, W) V R(ws, wy)

. P(ay, by, 1, dy)

. P(ay, by, c1, d3)

. —R(d;, dy)

. =Ry, ys) v =P(xs, y7, 27, W7) v P(x7, Vs, 27, W7)

. =R(ws, wo) v —P(x9, Yo, Zo, Wg) V P(xg, Vo, Zo, Wg).

NN W e

With respect to the fact that universal quantifiers are inverted into the existential
ones by negating of the formula F, the variables xs, ys, zs, Ws, Vs and ws have been
transformed into the corresponding Skolem constants a,, b,, ¢,, d;, b, and d,.

ATP produces the positive answer. It follows that fd AC—D is a consequence of I'.
In the following text, the extract from the resolution procedure which leads to the
empty clause is shown, instead of the real output from ATP which is more complex
and less readable. The notation "(m, n) & (k, 1)", at the beginning of each clause,
means that the clause is obtained by resolving nth literal of mth clause with /th literal
of kth clause.

8. (1, 1)&(3,1): =P(ay, y2, 22, w2) V R(by, y2)
9. (8, 1)&( 4, 1) R(by, by)
10( 9, 1) & ( 6, l) —IP(X7, b], z7, W7) \4 P(X7, b;” Zy7, W7)

11.(10, ) & ( 3, 1): P(ay, by, ¢;, d))

12.(11, ) & ( 2, 1): —P(x4, by, 1, wy) v R(d;, wy)
13.(12, ) & ( 4, 1): R(d;, db)

14.(13, ) & ( 5, 1): - (Empty clause). [



A TECHNIQUE FOR THE IMPLEMENTIG PROBLEM RESOLVING FOR. .. P-117

FExample 2. By the implicational problem {[4,B] c [B.C], [B,C] c|C.,D]} |= [4,B] <
|C,D] transitivity rule for ids is represented. We generalize previously mentioned ids
by tgds defined over R = ABCD: <(x;, y1, z1, w))(R), (x1, y)(BCO)>, <(x1, ¥1, 21,
w)(R), (v1, z;)(CD)> and <(x,, vy, z;, W), (x;, y)(CD)> and obtain:
* F;=1(4, Bl c |B, C]):

(Vx)(Vy)(Vz)(Yw ) Ex) @w)(P(x1, Y1, 21, wi) = P(x2, X1, 1, W2))
* F>=1(IB,Cl1 < [C, D)):

(Vx3)(Vy3)(Vz3)(Yw3)(@x)(Qya)(P(xs, V3, 23, W) = P(X4, Y, V3, 23))
o —F=T(A4.B] c |C,D)):

(Fxs)3ys)3 z)Ews)(Vxe)(Vys)(P(xs, Vs, Zs, Ws) A =P(Xe, Vo, X5, Vs))-

The following clauses (where f;, /2, f3, f4 are Skolem functions and a,, b,, ¢,, d; are
Skolem constants) are inferred from 7, /> and —F:
L. =Px;, yi, zi, w) v P(fi(xr, yis 2, wi), X, i, 20, Vi, 21, Wi))

2. =P(x3, y3, 23, w3) v P(f3(x3, V3, 23, W3), f4(x3, V3, Z3, W3), V3, Z3)
3. P(a,. b/, Cj, dl)

4. "1[)(X(5, Y6, 4y, bl)

ATP also generates an empty clause, so the implicational problem is positive:
5.3. D) &, 1): P(fiay, by, ¢1, d)), ay, by, f(ay, by, ¢, d)))
6. (5. 1) & (2, 1): P(fs(fi(ay, by, c1, d)), ay, by, folay, by, 4, dy)),

Jdfi(ay, by, c1, dy), ay, by, fAay, by, ¢, d))), ay, by)
7. (6, 1) & (4, 1) - (Empty clause). []

Fxample 3. For the implicational problem {><(48, AC), A—>C} |= C—B, which has
a negative solution, ATP can produce the negative answer (it does not generate the
empty clause). The predicate formulas are:
e [ =T(><a(AB, AC)):

(Vx)(VyD)(Vz) (V) (Vz)(P(x1, yi, 21) A P(x), Y2, 22) = P(xy, 1, 22))
o [ =EA->C):

(Vx3)(Vy3)(Vz3) (VY )(Vz)(P(xs, y3, 23) A P(X3, V4, 24) = 23 = 24)
o [=E(CHB):

(Vxs)(Vys)(Vzs)(Vxe)(Vye)(P(xs, vs, 25) A P(Xs, Yo, Z5) = ¥s = V). U

Example 4. Observe the implicational problem: {A4—>C, B>C} |= {(4, B)}->C,
which represents so called chaining rule for imds. ATP gives the positive answer,
where:
o I =FEA-C):
x)(Vy)(Vz ) (Vy)(Vz)(P(xy, yi, 21) A P(xy, ya, 22) = 2= 23)
o [ = E(B-C):
(Vxs)(Vys)(Vzs) (VX )(VZ)(P(xs, v3, 23) A P(xq, v3, 24) = 23 = 24)
e FF=FE({(A, B)}->0):
(Vxs)(Vys)(Vzs)(Vys)(Vze)(Vz)(P(xs, Vs, 25) A P(xs, Ve, 26) A P(X6, Vs, 27) = 5= 27).
0
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6. Conclusion

It appears the implicational problem for gds can be tested relatively easy by using the
automatic reasoning method, i.e. by the resolution procedure. Therefore, the first
order predicate calculus formalization of the problem is introduced and the experi-
ments are performed, by using the ATP System, which is developed on Technical
Faculty in Zrenjanin. An alternative and similar technique to this one is Chase al-
gorithm. There are two reasons, why we decided to use the automatic reasoning
method versus Chase: (i) the existence of ATP System, which is based on the resolu-
tion procedure and (ii) nature of gds, i.e. the fact that the structure and interpretation
of a gd can be formalized by such a predicate formula, for which we believe it is ade-
quately readable. Nevertheless which of the techniques we use, there are two prob-
lems: exponential complexity of the techniques and general undecidability of the
problem.

As it concerns the complexity, one of the ways to improve that, is to reduce the prob-
lem on the specific dependency type (if it is possible), such as egds, or commonly
used fds, for which there is a polynomial membership algorithm. However, our aim
was to comsider gds as a unified manner of representing the other, various
dependency types. There are also possibilities to improve average complexity of the
resolution procedure in the cases when the equality predicate R(A,, 4,) is used. One
of them concerns renaming of R(4,, 1,) into R,(4., 4,) (i.e. its indexing), in the case
where A, and A, have been used over the same attribute 4; in the predicate Eq:

B (e 3.

In those situations when our implicational problem is decidable (it is always the case
for full fgds and egds), there are several techniques by implementation of ATP can
be "forced" to behave decidably and avoid uncertain outcomes. However, the uncer-
tainty appears for the implicational problems (nevertheless the answer is positive or
negative) that include both embedded fgds and egds, such that there is an interaction
in the resolution procedure of equality predicates and Skolem functions, which come
from existential quantifiers. This interaction requires introducing of equality axioms
predicates (reflexivity, symmetry and transitivity), which makes the complexity
WOTSE.

Practical usefulness of described technique is limited to theoretical purposes and
smaller examples due to exponential complexity of the problem (but it is the case for
Chase, t00) and the fact that gds are converted into the clauses by hand. One of the
next steps is to build a translator for converting the set of gds into the set of clauses
for ATP. As it concerns the design of commercial database schemas, the techniques
based on resolution procedure or Chase are generally impractical. On the other hand,
the implicational problem in such situations is bounded to fds or it is even avoided by
applying the conceptual design techniques, such as entity-relationship diagrams.
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Abstract: Multi-layered feedforward neural networks are highly parallel processing
elements, with each node contributing to the final output response. The problem of pruning
nodes in the network is studied, in order to determine whether the process of pruning
degrades the network performances. An alternative approach to the process of pruning
network nodes is suggested, as well as a novel way of reconstructing the degraded network.

1. Introduction

Many problems, such as signal processing, natural language processing (Cundeva,
1993), meet the problem of controlled pruning nodes. The most important objective
is the improvement of network generalization ability. There are various algorithms
for pruning weights or nodes of a trained neural network. Here, the problem of
induced, or controlled pruning of input nodes is examined and studied. Unlike other
pruning algorithms that interfere the learning algorithm itself, the suggested method
operates within the training set (input/output pattern pairs). This method disconnects
and reconnects the input nodes of the network. The performance degradation rate of
the trained network, when certain number of input nodes were pruned, was also
proposed and investigated.

2. Theoretical Foundation

The term zero-pruning of a node 1 is introduced. During cach network training
iteration, when the weights are adjusted according to the backpropagated error
signals (Rumelhart ef al., 1986), all weights connecting the input node i and the
hidden nodes get zero value. When the training process is terminated, those weights
remain with zero value. Nevertheless, the network works properly, without the zero-
valued weights participating in modeling the network output. The i-th input node
can be pruned, without disturbing network performance.

In practice, to achieve the zero-pruning of a node the following algorithm is used:

P-121
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Algorithm for zero-pruning

- i-th input node is chosen for zero-pruning;

- the learning algorithm is modified: after the weight ad_]ustment in each iteration,
the following cycle is added:

=1
repeat
w;=0;
=i+,
until j>Nhid~ |

This modification of the learning algorithm has an O(n) complexity, where n is the
number of hidden nodes in the network.

The zero-pruning algorithm can be confirmed by analyzing the input signals of the j-
th hidden node according to BP algorithm (Rumelhart et al., 1986):

(1) netj ZZij-ok =Zwkj-0k ,j:l,...,Nhjd
k ki

because wj has a zero value.

Compared to the network trained without the above modification, zero-pruning
affects the internal representation of the network, while the learning process remains
equally fast.

An important parameter for comparing two networks trained with same initial seed
is the error function E (2).

@ E=—;—Z(ti )

The following example (Fig. 1) shows that the number of required iterations for
training the network with 4:3:4 topology (4 input, 3 hidden and 4 output nodes)
(Madevska, 1996), used as a heteroassociative memory, is the same in both cases.
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35
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’ N SN training
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S S pruning
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1 100 200 300 400 500
Iterations

Fig. 1. Training the network without modification and with zero-pruning

3. Induced Pruning

The idea of setting certain weights to zero and pruning the associated input nodes, is
used for developing a novel algorithm for pruning input nodes in the feedforward
neural network, through the input training set. In this case, the objective is to prune
input nodes after completing the training process, without zero-pruning. The
advantage of this approach is that there is no need for an intervention in the learning
algorithm. i.e. the weights are manipulated from outside (Madevska, 1996).

The expression modified training set is used: the i-th coordinates of all input patterns
get inhibitory activation, while output patterns remain unchanged.

The method of induced pruning can be realized with the following algorithm:

Algorithm for pruning the input node i

- network is trained to the certain value of the error function E;
- training set is modified;

- network is retrained with the modified training set;

- i-th input node is pruned. i

A theoretical explanation of this algorithm can be found in the following expression
(net input of the j-th hidden node):
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(3) netj :szJ 'Ok IZWM 'Ok 5
k kA

because 0;, the i-th component of the input patterns, has a zero value.
Weight w; is modified by the formula:
@) Wij(t +1)= Wij(l) o nﬁj 0i.

Therefore, when patterns of the modified training set are presented during the
retraining process, weight w;; remains unchanged:

(5) wi(t + 1) = wy(t), |Aw; = 0.
This process is repeated over a// hidden nodes.

During the retraining process, all weights between the i-th input node and the hidden
layer remain unchanged, so pruned nodes no longer affect the modeling of error
function E. Therefore, pruning of a specified node i will not decrease network
performance.

The efficiency of this algorithm S’rrongly depends on the retraining process. The
number of required iterations should not be close to the number of training
iterations. By analyzing this problem, it was concluded that the number of retraining
iterations is significantly less than the number of training iterations. If the relevance
(Smolensky, 1986) of the node i has insignificant value, its pruning does not increase
the value of the error function E. Hence, the modified input pattern set will be
recognized and no retraining is necessary.

The relevance of the input node can be computed in an alternative way, which does
not require modification of the learning algorithm. The advantage of this approach is
the opportunity of operating via the modified training set:

Algorithm for computing the relevance of the i-th input node

- network is trained to the certain value of the error function, £,,,;, ;

- training set is modified;

- the error function is computed for the presented modified training set, E;;
- the difference p;=| E,.;,-E;| is the relevance of the input node i. i

The only additional computation in this method for calculating the relevance, is
determination of the error function value E;, i.e. when the modified input pattern set
is presented.

In the cases where the relevance of the pruned node has a notable value (bigger than
0.4), the network has to be retrained with the modified training set; however, the
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number of retraining iterations is significantly smaller than the training iterations.
The damage done by this kind of pruning upsets the network, but it is quite likely to
move into a state that has a large gradient toward the correct solution, so when
retraining occurs, the network moves along this steep gradient and quickly recovers
the solution (Beale, 1992). This is due to similarity of the training set and the
modified training set (Rumelhart, 1986).

The benefit of the suggested pruning method of input nodes is also in the ability to
reconnect the pruned nodes, which were not actually removed. If needed, the
network is retrained with the initial training set. This process does not require a
large amount of iterations, for the same reasons as in the pruning case. All initially
learned patterns were not lost from memory.

4. Simulation Results

All neural networks used in the following simulations were fully connected three-
layered networks with distinct topologies, trained with binary input/output pairs. The
proposed pruning algorithm has been tested and confirmed by a number of
experiments, including pruning more than one input node. Here, the modification of
the training set was extended by setting all corresponding input components with
inhibitory activation.

If the pruning of input nodes causes removal of distinctive input components, then
no retraining is possible. The network falls into a meta-stable position, because
different outputs correspond to the same input pattern.

Network with topology 10:6:8, used as a heteroassociative memory, was trained with
the given training set within 1000 iterations until an error function value of E=0.09.
Fig. 2. shows the required number for retraining in the worst case when different
combinations of input nodes were pruned.

10:6:8

Number of | Number of iterations for retraining
iterations the network when pruning the input

for nodes
(worst case)
E=0.09 number of pruned input nodes

1 213 k50 6] T

1000 10 | 50 | 50 | 50 | 50 [ 50 | 50
Fig. 2. Network 10:6:8
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The achievement and potential of these results motivated another, broader range of
experiments, in which the network topology and training sets from the Nettalk
project (Sejnowski, 1987) were used.

The training set consisting of 200 patterns was used to train the network with
topology 203:108:26. Results show that networks with immense topology and bigger
training set, also give good results with pruning nodes. The larger numbers of
network weights, the more retraining iterations are needed. Fig. 3. presents the
results of training the network 203:108:26 within 400 iterations (E=15.27).

203:108:26

Number of iterations for retraining
the network when pruning the input
| nodes

(Wworst case)

number of pruned input nodes

Fig. 3. Network 203:108:26

The Nettalk network has difficulties with learning (E=15.27 when 400 iterations are
done). The results can be significantly improved if simple scaling of the input pattern
training set is applied, i.e. instead of using the default neutral and excitatory
activation values, polar activations (inhibitory and excitatory) are used (Madevska,
1996). Furthermore, the number of retraining iterations is smaller. Table 3 shows
these results.

203:108:26, polar activations

Number of iterations for retraining
the network when pruning the input
nodes

(Worst case)

number of pruned input nodes

s |

20 30 40 60

Fig. 4. Network 203:108:26, polar activations
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5. Conclusion

The theoretical and experimental results described in this paper clearly indicate the
advantages of the proposed pruning algorithm — the nodes are pruned by the
modified training set, instead of intervening in the learning algorithm. Also, the
pruned nodes can be reconnected in the network, by retraining with the initial
training set. It was shown that the process of retraining is either needless or
inexpensive. Future research would concentrate on investigating the possibilities of
pruning hidden nodes via the training set.
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Abstract

Foreign functions could be described as a possibility for users to extend a
functional language on the implementation level. SK-graph reduction is a
technique for implementing functional languages which provides a ,,natural"
realization of non-strict language semantics. In this paper we show an extension
of the SK-graph reduction system with foreign functions i the (eager) procedural
language Modula-2 and discuss the possibilities of delaying (forcing) their
evaluation with the goal of compatibility with the lazy SK-system. Thus, we make
the SK-system faster and utilize foreign functions. The main contribution of the
paper is to provide lazy evaluation in Modula-2.

We analyze two ways of delaying the evaluation of foreign functions: a)
calling the SK-evaluator which stops the evaluation if an expression in weak head
normal form (WHNF) is on the top of the spine stack and b) implementing
foreign functions without calling the graph reducer. The second approach 1s
based on adding data structures and functions for delaying and forcing evaluation.

1 Introduction

There exist many programming styles and languages but none provide the generality for solving any
kind of problem. For that reasons, the possibilities of connecting different program paradigms are
investigated.

Foreign functions are functions written in a programming language that 1s different from
the language in which the mamn program 1s written. Foreign functions written in procedural

P-129
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programming languages could be described as a bridge between functional and procedural
programming paradigms. They are a good possibility to improve an implementation for the following
reasons:

o A functional language could be extended with a library of functions that have already been
implemented in a procedural language.
. Programs written in functional languages execute sometimes much slower than programs

written in procedural languages. By realizing the ,,critical" parts of a functional program
n a procedural language the execution of functional program could be made more efficient.

. With the definition of a foreign function, one can extend the language without changing the
implementation.

In this paper, we give a short description how to extend an SK-graph reduction based
implementation of a functional language with foreign functions. We concentrate on the
implementation of /azy foreign functions in a procedural programming language. By the term “lazy
functions” we mean the functions whose evaluation can be delayed and therefore that can operate
with infinite data structures. Since procedural programs are always “eager” to evaluate everything
they can in advance, the implementation of lazy functions in a procedural language is a challenging
task. Throughout the paper we use Modula-2 as a suitable representative of procedural programming
languages.

2 SK-combinator Graph Reduction
First we define combinators and give a short description of the SK-graph reduction.
2.1 Combinators

The combinators are A-expressions without free variables. The following A-abstractions are for
example combinators (K and S):

K= Axyx
S'= Mex. fr (gx)

In practice we define a larger set of combinators to implement a functional language. This technique
is called SK because every combinator could be expressed as a combination of S and K combinators.

The implementation of a functional language consists of compiling the functional language
into a combinator term and its reduction into a weak head normal form (WHNF.) The compilation
process is beyond the scope of this paper (see for example tutorial texts in [2,3,5] for more details.)
Let us now describe the SK-reducer (abstract machine).

2.2 SK-abstract machine
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The SK-abstract machine reduces the combinator term into its WHNEF. The combinator term in
WHNF is actually the result of the evaluation of functional program. The components of the
SK-reducer are:

o combinator graph, that has to be reduced,
. “spine stack” whose top points to the current combinator while the elements below the top

point to combinator “arguments.”

The reduction process consists of the following steps:

. unwinding the spine stack 1.e., searching for the combinator to be reduced and pointing to
all of its arguments on the way,
. reduction, 1.e., replacing the root of the reduced expression with the result of evaluation

Both steps are repeated until the top of the spine stack reaches the WHNF.
Next we describe the possibility of extending the implementation of SK-abstract machine
with defining foreign functions.

2.3 Implementation of Foreign Functions in the SK-reduction Model

For, the implementation of foreign functions, we have to define following:

. A new combinator corresponding to the calls of foreign functions (named Foreign).

. the compilation rule for the translating the calls of foreign functions into a combinator term
(with combinator Foreign),

. reduction rules for the combinator Foreign.

Let us show how the calls of the foreign functions are translated into a combinator term and how the
combinator Foreign is applied.

2.4 Translation of the Foreign Function Calls

Let the call of a foreign function start with " _" for unique naming purposes. Thus, every call of some
foreign function has the following form:

(_FunName A, A,...A,)
where FunName is the name of the implemented foreign function and A, A, ..., are the arguments
of the function (we use the lisp-notation for the function applications.) The combinator term that
represents the call of foreign function has to contain following components
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o combinator Foreign,
o the name of the called foreign function,
o arguments of the foreign function.

We have chose the following form of the combinator form:
(Foreign FunName’ (A°,A°,..4°))

where FunName’, A’ i = 1,...,n are translations of FunName, 4 ,i = 1,....n, respectively. In the
following section we describe the reduction rule for the combinator Foreign.

2.5 Reduction Rule for the Combinator Foreign

The communication between the SK-reduction machine and foreign functions is implemented
through the global variables Argument and Result [1,4]. SK-abstract machine is implemented as
a coroutine that transfers control to the foreign function explicitly, passing the arguments through
the global Argument. Every foreign function is implemented as well as a coroutine that explicitly
passes control back to the SK-machine, passing the result of its evaluation through the global
Result.

The reduction of the combinator Foreign consists of the following steps:

o evaluation of the arguments of the foreign function,

o evaluation of the name of the foreign function,

° call of the appropriate foreign function,

o updating the root of the combinator term that has been evaluated with the value of the

variable Result.

What follows is the Modula-2 procedure for the reduction of the combinator Foreign.

PROCEDURE RedForeign(s : SExp):;
VAR Ind : CARDINAL;
BEGIN
Argument := Eval(List of Arguments);
FunctionName := Eval (FunctionName) ;
Ind := Find(FunctionName) ;
(* finds address of the foreign function *)
TRANSFER (ExecAdr, MF.Address[Ind])
(* foreign function call *)
Update (s, Result)
(* Updating root of graph with result of foreign function
evaluation *)
END RedForeign;
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The function Eval is the SK-reducer.
We have so far described how to extend the SK-evaluation model with foreign functions.
In the following section, we discuss how to define /azy foreign functions.

3 Delaying the Evaluation of Foreign Functions

In this section we give two possibilities of delaying the evaluation of foreign functions. The first
possibility is based on the SK-machine calls whose evaluating strategy is lazy. The second one is
based on abstract data structures implemented in a procedural language. As an example we discuss
the processing of infinite lists.

3.1 Delaying the evaluation with SK-machine calls

As mentioned earlier, the evaluation of foreign functions could be delayed by calling the SK-machine
simulator, which is lazy. For example, if we want to operate with an infinite list, we can force the
evaluation of elements of the list one by one because the SK-evaluator stops the evaluation if the
current node to be reduced is a list-constructor.

Some procedures for operations on infinite lists follow. SK combinator term is represented
as an s-expression (abstract data type SExp) over which several operations have been defined
(Atom, Eq, Head, Tail, ...) with obvious meaning,

PROCEDURE LazyEqual(E, L : SExp) : BOOLEAN;
VAR

hE, hL, tE, tL: SExp:
BEGIN

IF Atom(E) OR Atom(L) THEN
RETURN Eqgq(E, L)

ELSE
tL := Tail (L); hL := Head(L):
tE := Tail(E); hE := Head(E):
RETURN LazyEqual (Eval (hE), Eval(hL))) AND (*)
LazyEqual (Eval (tE), Eval(tL)) (*)
END

END LazyEqual;

PROCEDURE Memb (E, L : SExp): BOOLEN;
VAR hL, tL: SExp;
BEGIN
IF Eq(L, Null) THEN
RETURN FALSE
ELSE
hL := head(L);
IF LazyEqual (Eval(E), Eval(hL)) THEN (*)
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RETURN TRUE

ELSE
tL := tail(L):;
RETURN Memb (E, Eval (tL)) (*)
END
END
END

et us now analyze the procedures LazyEqual and Memb. The arguments of these procedures
) are unevaluated. When we need an element of the list, its evaluation has to be forced. The
-am lines forcing the evaluation of the list are designated with (*). LazyEqual(Eval (hE),
1)) means “Evaluate the head of the list E, then evaluate the head of the list L and examine
if they are equal.” If the “heads™ of the lists are not atomic the evaluation in SK-machine is going
(o be stopped. Through recursive calls of LazyEqual and calls of the SK-machine (Eval) we force
the evaluation step by step. The next procedure shows the foreign function Member that calls the
defined functions.

PROCEDURE Member;
VAR al, a2: SExp:;

BEGIN
LOOP
al := Head(Argument );
a2 := Head(Tail (Argument))
IF Memb (al, a2) THEN
Result := Quote("T");
ELSE
Result := Quote("F")
END
TRANSFER (MF.Address[1l], Execute)
END

END Member;

This model for delaying the execution is quite expensive. In our example, we had to call the
SK-executor to evaluate every element of the list. That means, for every list element we had to
unwind the spine stack, evaluate the element of the list, update the root with the result of the
evaluation. We now show how to delay the execution of foreign functions without calling the
SK-machine.

ying the Evaluation Without an Abstract Machine
In the previous section, the lazy evaluation of the lists is based on the laziness of the SK-machine.
Now, we don't want to call the SK-machine but implement the whole mechanism directly in a

proce

dural language. We first define the base data structures and functions for processing infinite



IMPLEMENTING LAZY FOREIGN FUNCTIONS ... P-135

lists.

The main idea is to save the parameters for the creation of a list element instead ol
evaluating the whole list. When we need some unevaluated element, we can simply evaluate it on
the fly. Elements of infinite lists are represented as nodes which contain the function and 1ls
arguments for evaluating the next list element. The next several procedures show the definition of
an infinte list node (function NewLazyNode), infinite list (function LazyCons) and the evaluation
of the list head and tail (LazyHead and LazyTail), respectively.

PROCEDURE NewLazyNode (Fun: FunTypePtr; Arg: SExp): SExp;
VAR Hlp : SExp;
BEGIN
New (Hlp) ;
SetType (Hlp, LazySE);
ALLOCATE (Hlp”.LazyEl, SIZE (LazyNode));
Hlp”.LazyEl”.Function := Fun;
Hlp”.LazyEl”.Arguments := Arg;
RETURN Hlp;
END NewLazyNode;

PROCEDURE LazyCons (Car:SExp; CdrFun:FunType; CdrArgs:SExp) :SExp;
VAR Hlp : SEXp;
LazyList : SExp;

BEGIN
New (Hlp) ;
Hlp := CdrArgs;
LazyList := NewLazyNode (CdrFun, CdrArgs):;
Hlp := Cons (Car, LazylList);
RETURN Hlp

END LazyCons;

PROCEDURE LazyHead(L: SExp): SEXp;
BEGIN
IF IsTypeSE (L, LazySE) THEN
EvalLazyNode (L) ;
RETURN Head (L) ;
ELSE
RETURN Head (L)
END;
END LazyHead;

PROCEDURE LazyTail (L: SExp): SExp;
BEGIN
IF IsTypeSE (L, LazySE) THEN
EvalLazyNode (L) ;
RETURN Tail (L)
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ELSE

RETURN Tail (L)
END;
END LazyTail;

LazySE is the data structure thet internally represents the lazy list node. The function Apply applies
its first argument (which is a function) to its second argument and returns the result of the
application. The function Odds below shows how to create an infinite list of odd numbers starting
at n: the start element of the list is n, and the rest are the odds beginning at »+2. Instead of a
diveregent recursive call, we create a ,,lazy node". If we need it, its evaluation is going to be forced.

PROCEDURE EvallLazyNode( LazyList : SExp) -
VAR
Arg : SExp’
Fun : FunType;
BEGIN
IF IsTypeSE (LazyList, LazySE) THEN
Fun := LazyList”.LazyEl”.Function;
Arg := LazyList”.LazyEl”.Arguments;
Update (LazyList,Apply (Fun, Arg)):;
END;
END EvalLazyNode;

PROCEDURE Odds( n : SExp): SExp;

BEGIN
IF (NOT (ODD(ValIntSE(n)))) THEN
n := QInt(vValInt(n) + 1) ;
END;

RETURN LazyCons (n, OddsAdr, Cons (QInt(ValInt(n) + 2), Null)):;
END Odds;

The fimction NthEl shows how to find nth element of the list which is created with function Odds.
The functions LazyHead and LazyTail force the evaluation of “lazy nodes.”. The evaluation of odds
(which could be divergent) stops in the function Odds resulting in a “lazy node.”

PROCEDURE NthEl (n : INTEGER; L : SExp) : SExp;
BEGIN
IF n = 1 THEN
RETURN LazyHead (L)
ELSE
RETURN NthEl (n-1, LazyTail (L))
END;
END NthE1;
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The appropriate functions for examining if an expression is an element of a list froin the previous
example:

PROCEDURE LazyEqual (E, L : SExp): BOOLEAN;
VAR
hE, hL, tE, tL: SExp;
BEGIN
IF (Atom(E) OR Atom(L)) THEN
RETURN EgSE (E, L)

ELSE
tL := LazyTail(L); hL := LazyHead(L);
tE := LazyTail(E); hE := LazyHead(E);

RETURN LazyEqual (hE, hL) AND LazyEqual (tE, tL)
END
END LazyEqual;

PROCEDURE Memb (E, L: SExp) : BOOLEAN;
VAR hL, tL: SExp;
BEGIN
IF Eq(L, NullSE) THEN

RETURN FALSE
ELSE

hL := LazyHead(L);

IF LazyEqual (E, hL) THEN

RETURN TRUE

ELSE
tL := tail(L);
RETURN Memb (E, tL)
END
END
END Memb;

We don't call the machine evaluator at all. The entire evaluation i1s performed within the procedural
model. This way provides a realization of fast foreign functions with delayed evaluation.

4 Future work

There are a lot of functional language compilers with runtime systems written in procedural
languages. The discussed method to define foreign functions with delayed evaluation could be used
as an optimization of such implementations for lazy functional languages. We are currently working
on such an optimization of Glasgow Haskell Compiler (direct translation of Haskell functions into
C-with unboxed values and extension of the implementation with foreign functions).
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5 Related work

The primary motivation for this work was to emend the SK-reduction based implementation of a
functional language via communication with Modula-2. There are meny methods to combine Scheme
and C functions and data structures via foreign functions. There also exists a foreign function
interface which allows a Common Lisp program to access a database management system. But
Scheme and Common Lisp are strict languages and the evaluation strategies between
Scheme/Common LISP and C are compatible. We defined foreign functions in a strict language but
lazy environment and gave a model for their lazy evaluation.

The Glasgow implementation of the non-strict functional language Haskell provides an
interface to call C-functions from Haskell programs but there is no possibility to define foreign
functions in our sense (as an extension to the procedural language).

6 Conclusion

We have shown how to implement the foreign functions with delayed evaluation within procedural
paradigm when implementing functional languages by SK-graph reduction. The first approach
shows how to implement lazy foreign functions by calling the SK-executor and the second one shows
how to reach it by defining new data structures and runtime functions. The first way is rather natural:
If something has to be evaluated lazy, let the lazy SK-reducer do that. The costs of that are the usual
costs of the SK-graph reduction. The second way is the way which provides fast foreign functions
with delayed evaluation. The overhead of the latter are more runtime system functions and data
structures.
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Abstract. The efficiency of SK reduction machine implementation can
be increased by extending the primitive data types set. Including primi-
tive data types (numbers, lists, strings,...) into the environment of pure
combinators, the question arises about combinatorial properties of the
primitive constants and their application and reduction. In this paper
we describe a solution of this problem.

1 SK Combinators

We can define combinators as A expression in which there are no occurrences of
free variables [1]. Combinators have properties of operators which value depends
exclusively on the argument values. The formal theory of the combinators is
described in [2]. In theory any A-expression can be represented using two basic
combinators called S and K. Turner ([6]) described how functional programming
languages can be compiled to SK combinatorial expressions, and first used SK
reduction machine for its evaluation.

Even they can be expressed and defined using S and K, usually the SK expression
language is extended by adding sets of constants and some primitive operators,
with intention to make combinatorial expressions shortly and to make transla-
tion from a functional language simpler. When one adds some primitive types,
for example numbers and strings, the question of combinatorial properties of
added constants and operators often stay open. Here we pay attention to these
properties defining some constants and operators on them using S and K. Using
these constants and operators, some complex type constants and operators are
defined. Finally, we analyse the behavior of all defined constants and operators
inside combinatorial expressions, and their application and reduction, especially.
To make combinatorial expressions simpler, we use the extension of SK expres-
sion language described in [5]. This extension allows direct recursive notation
without usage of Y combinator.

Here we remind on some basic combinators (others than S and K) and their re-
duction rules:

I= SKK Iz—r
B= S(KS)K Bfry—flzy)
C= S(BBS)(KK) Cfry—fyr

P= S(K(SI))K Pry—yr

P-139
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Let K, » be the combinator that selects n-th of m arguments. The following
equations holds:

Ki2 =K Ky 2 = SK
Kim+1 = S(KK)K1 m Kntimayr = KKnm

2 Realisation of Logical Constants And Operators

The definition of the if operator is tightly related to definition of logical con-
stants true and false. These two constants have to be defined in such a way
to be useful by if combinator and other logical operators’ definitions. It is very
suitably to define true and false as selectors:

true = K truezy— z
false = SK falsezy—y

Now, the if combinator can be defined as:
aE =1 ifre; ey > re; e

Using these definitions it is possible to define logical operators not, and, or.

not = C (P false)true not z — P false z true — z false true
and = C C false andzy— CC falsez y —

— C z false y— z yfalse
or = P true orry— Ptruezy— rtruey

3 Realisation Of The List Constants And Operators

To make the usage of the lists possible, it is necessary to define list constructors
and appropriate operators. Lists are built using nil constructor which denotes
the empty list, and cons constructor which builds a new list from an element and
an existing list. Operators head and tail (for extracting head and tail of a list),
isemptylist and notemptylist (for testing if list is empty or not), and append
(that joins two lists) are defined. We show that some other data types can be
defined using these list constants and operators, for example natural numbers.

The cons constructor has to be defined as a combinator whose application on
arguments H (head) and T (tail) results in combinator from which we can extract
either the head or the tail. Because of that, we consider cons is three arguments
operator, where the third argument is an operator that applies to list:

cons HT F— fHT

The combinator that satisfies these propositions can be defined as: cons = BCP.

As a consequence, the combinator that represents a list operator f has to be
defined as P f:

Pf(consHT) - consHT f— fHT

The head operator is Pf, where fselects the first of two arguments, and the tail
operator i1s Pg where g selects the second of two arguments: '

head = PK head (cons HT) - consHTK - KHT — H
tail = P (SK) tail (consHT) - cons HT (SK) > SKH T— T
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To make the lists’ manipulation possible, it is necessary to allow testing on the
list emptiness. We do that using the notemptylist operator that reduces to
true when applied on non-empty list, and to false when applied on nil!. Idea
1s to represent an empty list with a constant operator, which will guarantee the
different result than the notemptylist application on a non-empty list, when
cons is evaluated. Appropriate notemptylist operator can be defined as:
notemptylist = P(K(Ktrue))
with reduction rule

notemptylist (cons HT) — cons HT (K (K true)) — K (Ktrue) HT —
— K true T — true
Using notemptylist we define isemptylist and append:
isemptylist = B not notemptylist
append | m = isemptylist | m (cons (head /) (append (tail /) m))
Constructor nil has to ensure that notemptylist nil evaluates to false. It

is simple to achieve this constructing a constant operator that reduces to false
when applied on one argument:

nil = K false nil r = K false r — false
notemptylist nil — nil (K(K true)) — false

Notice that head and tail evaluate to false when applied on nil.

4 Natural Numbers Introduction

The set of natural numbers can be introduced using lists, with Peano’s arith-
metic as basis. We consider the empty list is zero constant, and introduce larger
numbers using succ operator?:

Ng = zero

Np41 = succN, = succ"t! zero
Define zero and succ combinators using lists:

zero = nil
succ = cons K
Define pred operator that evaluates number smaller by one using list operators:
pred = tail pred N, — tail (cons K N,) — N,
Notice that pred is applicable only to numbers larger than zero, because appli-
cation of pred on zero evaluates to false, which is not a number constant. The
testing, if a natural number is zero or not, is defined as:
notzero = notemptylist
iszero = isemptylist

-

Notice that we can define these combinators in opposite direction, defining first
isemptylist as combinator P(K(Kfalse)) which evaluates false when applied to
a non-empty list, and defining nil as combinator Ktrue which evaluates true when
applied on one argument. Then, it is: notemptylist = B not isemptylist [4]

? The power of combinators is defined as: f° y=y, [ y=/(/"y).
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The comparison of natural numbers can be defined using Lisp-like syntax as:

eqnum r y = if (iszero z) (iszero y)

(if (iszero y) false (eqnum (pred z) (pred y)))

which can be transformed to combinatorial expression

eqnum = C(BS(S(BB notzero) (B(S(S iszero (K false)))

(B(C(B eqnum pred)) pred)))) iszero

Accordingly to the last expression complexity, in the further text we use Lisp-
like syntax instead of transforming expressions to combinatorial language.

Operators that evaluate relations ’less than’, ’less equal’, 'greater than’ and
‘greater equal’ can be defined as:

isltnum z y = iszero y false (iszero r true (isltnum (pred z)(pred y)))
islenum r y = or (isltnum z y) (eqnum z y)

isgtnum z y = not (islenum z y)

isgenum £ y = not (isltnum z y)

After all, we define addition, multiplication and subtraction operators:

add z y = iszero z y (add (pred z) (succ y))
mul z y = iszero z zero (add (mul (pred z) y) y)
sub z y = iszero y z (sub (pred z) (pred y))

Notice that subtraction evaluates correct results only if arguments are correct.

A different approach is used in [2], with idea to use numbers as iterators3:4:
Z, fz — f™ z. Our definition is used to make the creation of combinators, that
compares constants of defined types, possible. Notice that 1t is not simple to
compare iterators from inside the combinatorial language.

5 Other Data Types

It 1s natural to represent strings as lists. A character we represent as a number,
and a string as a list of characters:

emptystring = nil

concatstring = append

We define vectors as lists of constant length. Vector implementation is based
on newvector (the constructor of a vector with given size and initialisation),
getvector (the extractor of a given element of a vector) and setvector (the
operator that replaces given element of a vector with a given value) combinators
with the following definition:

® Numbers are defined as: Zo Ty =y, Zny1 zy = z (Zn zYy), zero = false, succ
= SB. This approach produces interesting outcomes. Some numbers operations are
defined elementary: add= S’ B, where S’ fz y z — f(z z) (y 2), mul= B, pow= I, where
PoWZn Zm — Zmn. '

* A variant of this approach is pointed out in [3], where the next definition is used:
Znt1 oY= Zn z(z y). The result is different succ operator definition: succ= BW(BB),
where W=CSI.
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newvector n r = iszero n nil cons r (newvector (pred n) z)
getvector vn = notemptylist v (iszero n (head v)
(getvector (tail v) (pred n))) false
setvector v n r = notemptylist v (iszero n (cons z (tail v))
(cons (head v) (setvector (tail v) (predn) z)) ) nil

Notice, that application of getvector with incorrect arguments evaluates to
false, and application of setvector on incorrect arguments evaluates to nil.

Every combinator presents a program by itself, but in complex operations against
combinators it becomes important if combinator involved in the evaluation pro-
cess represent a constant, a data structure or a program. We introduce a data
type that makes using marked programs possible: prog is constructor of marked
program, and apply is its evaluator. It 1s goal to differ marked programs from
other data types.

Idea is similar to one used when lists were defined, but prog operator captures
only one argument, not two as cons does:

apply (prog comb) — comb

The next definitions of these combinators present a solution of previous condi-
tion, but allows much more than simple use of marked program (in opposition
to, for example, definition prog = K):

prog =P

apply =PI

apply (prog comb) = PI (P comb) — P comb I — I comb — comb

6 Consequences

Behaviour analysing of defined types of combinators is based on their applica-
tion and comparison. Application analysis 1s done examining constructors of all
mentioned data types

The logical constants are selectors of one from two arguments and they apply
with next results:

truery — r

falserzy— y

An empty list always evaluates to false (when applied on one argument), while
a non-empty list application depends on its argument:

nil z — false

consHTzr— zHT

The natural number application 1s similar to the list application. If we do not
assume that a specific element is used in the list representing a number, numbers
evaluate:

Nor —nilz — false

Npy1r z—> consHN, z— zHN,

Especially, if we assume that a number is a list that consists only of K combina-
tors some other results arise:
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Npy1 T — cons KN, = —z KN,
Npt1 Npp1 — (suce Nm) KN, - KKN, N, = KN,
Not1 No — No K N, — false N, — SKN,

where KN, is a constant operator that evaluates N,, when applied on one argu-
ment, and SKN,, is an identity operator, same as I is.

The strings, the vectors and the matrixes apply as lists do.

Shown application rules should be considered when incorporating these primi-
tive types in combinators’ reduction machine. The reduction machine implemen-
tation is not correct if primitive constants’ reduction is not supported, because
there are non-strict functional languages that can be expressed and programmed
using combinators’ reduction machine. :

Another aspect of data types’ behaviour is the possibility of their comparison. :

[t is important to implement such data types that can be differed from inside
combinator language. At least three different equality can be considered: syn-
tactical (=), reductional (=;) and semantical (=3) equality.

Two combinators are syntactically equal iff the expressions that represent them
are identical:

R(K) 1 S(R(KK))

S(KKK) #; SK
Two combinators are reductionally equal iff they can be eager reduced to syn-
tactically equal expressions:

K(KK) #2 S(K(KK))

S(KKK) =, SK
Two combinators are semantically equal iff they evaluate same results in all con-
ditions. The semantical equality is often noticed as extensional equality:

K(KK) =3 S(K(KK))

S(KKK) =3 SK
Syntactical equality.is most specialised, reductional represent somewhat wider

relation, and semantical is most wider considered. For every two combinators Q
and R:

Q =y R = 01 =2 R

Q=2R = Q=3R
Semantical equality is not calculable, i.e. the universal algorithm evaluating the
semantical equality of two operators does not exist. Syntactical equality is cal-
culable using metalanguage (the language in which reduction machine is imple-
mented) and there can exist a primitive combinator that evaluates the syntactical
equality of two combinators. Reductional equality is not calculable because re-
duction of combinators expressions if semi-calculable.

Here we consider only a segment of comparison problem: Is it possible to differ”

basic combinator types (logical constants, lists, marked programs) from within
combinatorial language? Because all other structures are realised using lists, it
1s enough to recognise only mentioned types. If we can differ basic combinator
types, it i1s enough to differ the constants of these separate types to differ all

[
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available constants. Notice we already have defined the number comparison op-
erator eqnum.

Assume our type testing operator is selection operator that selects appropriate
of given arguments:

1sbool iff = 1s true or false
testtype r isbool 1slist isprog — < islist iff zis nil or (consH T)
isprog iff z1s (prog comb)
Combinator can not be analysed from outside - only technique to examine a com-
binator 1s by examining its behaviour. It is necessary to apply the tested combi-

nator in conditions that provide a unique type depending result. Our testtype
operator has to be of following form:

testtypezabe... s zabe...

The arrity of testtype is not obvious. We have to compare applications of de-
fined constants:

true a b — a

falseab —0b

nilabe — falsebc—c

consHTa — aHT

prog comb a — a comb

In many cases the result is argument a or its application. After replacing a = Ks 5,
and supplementing to seven arguments, all typed constants give different results:

true a b ¢ d e f g Bool List Prog —acdefg Bool List Prog
— g Bool List Prog

falsea b c d e f g Bool List Prog — bedefg Bool List Prog

nil a b e de fg Bool List Prog — cde fg Bool List Prog

cons HT a b e d e [g Bool List Prog — aHT b ¢ d Bool List Prog
— d e f g Bool List Prog

prog comb a b ¢ d e f g Bool List Prog— a comb b ¢ d e f g Bool List Prog
— e f g Bool List Prog

Now it 1s possible to define other arguments as selectors:

a= K5‘5 b= Kr,‘g
c =Kg7 d= Ks 6
e=Ksgs g=Ki 3

while fis unimportant and can be K, for example.
Finally, the definition of testtype is:

testtype r — 7Ky 5 Ko s Ke,7 K56 K55 KKy 3
Now we can define specific testing operators:

isboolean r = testtype r true false false
islist r = testtype r false true false
isprog r = testtype r false false true

Because of impossibility to compare programs, we can define:

eqprog r y = false
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It is not complex to compare two logical constants:

egbool z y = if z y (noty)
The list comparison is somewhat complexly and can be successfully evaluated
only if lists, constructed of acceptable constants, are used:

eqlist r y = if (isemptylist z) (isemptylist y) (and (eqcomb (head z)

(head y)) (eqlist (tail z) (tail y)))

where eqcomb is used, which evaluates the equality of combinators of any of de-
fined types:

eqcomb z y = testtype z ((isbool y) (egbool z y) false)
((islist y) (eqlist z y) false)
false

where this is applicable on numbers, if they are used strictly, as lists of K-s.

7 Conclusion

Some combinatorial data types and appropriate operators are defined. The com-
binatorial behaviour of constants of these data types is analysed. It is proposed
that an implementation of combinators’ reduction machine, that contains these
types as primitive ones, should preserve described behaviour of constants.

The equality operators are defined for use inside these types, and an operator
for comparing data types is defined. Using previous, an operator that compares
all introduced data types is described and defined. By this we suggest that it is
possible to create any complex type in a way its constants can be distinguished
from constants of other types, from inside of combinatorial language. For that
reason it is good to implement primitive types in reduction machine considering
preservation of their constants combinatorial behaviour.
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Numberings are ubiquitous both in logic and computer science. Their introduc-
tion dates back to Kurt Godel who, in his masterpiece (Gaodel, 1931) proving
the incompleteness of formal theories, had the brilliant idea to code signs into
(natural) numbers. His so-called Method of Arithmetization, cf. the discussions
of R.B. Braithwaite in (Godel, 1962) and of S.C. Kleene in (Godel, 1986), as-
.,ng of natural numbers the ‘Godel number’
2™ 3™ ... (where my is the k-th prime number). Via this numbering map
every string (by associating to each of the primitive symbols a distinct number)

signs to any finite sequence ny, ..

On Godel Numbering Systems
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Abstract

Numberings are one of the fundamental milestones on which logic and
computer science are based. Despite this, their study has been so far
somehow neglected, maybe because their simplicity led to the erroneous
assumption that, after all, there was not much to say about them. In
this paper, we start to shed some light on numberings, exploring their
structure with respect to their economicity. We introduce the framework
of numbering systems, and refine it imposing a monotonicity condition.
Within these concepts, that properly formalize numberings for sequences
of data, we show that there are no most economical numberings due to
the richness of the numbering structure. Then we consider those number-
ings systems that are allowed by machines as used in computer science.
This leads to the result that there are still no most economical numbering
systems except for one noticeable case, the two-counter register machine,
where there is a most economical numbering system: quite surprisingly, it
turns out to be just the original numbering system used by Godel to prove
his famous theorem on the incompleteness of formal theories.
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or finite sequence of numbers can be coded into a single number. This map, that
was the core tool of Godel’s proof, was naturally generalized to the concept of
numbering (also said Godel numbering), that is an injective map to the natural
numbers (sometimes with the additional requirement that the image is decid-
able).

This notion plays a fundamental role in a multitude of disciplines, ranging from
the study of logical systems to recursion theory. However, its importance has
been somehow inversely proportional to the number of studies on it. This is
due to the fact that, after all, numberings (besides their ‘philosophical’ mean-
ing) seem more a technical toolbox to be utilized rather than a topic to study
on its own: indeed, the (to the best of our knowledge, negligible) work entirely
devoted to them (e.g. see Manin, 1977, pp. 233-238) depicted numberings alone
as trivial mathematical objects. For instance, the usual notion of equivalence
between numberings (cf. Manin, 1977), saying that f and g are equivalent if
fog! and go f~! are computable, gives the flimsy result that all numberings
are equivalent.

In this paper, we start to shed some light on numberings for their own:
we formalize the numbering for sequences of data using the obvious concept of
numbering system, much like recursive functions has been formalized using pro-
gramming systems (Machtey and Young, 1978; Kfoury, Moll, and Arbib, 1982;
Phillips, 1992), and natural numbers has been formalized into the A-calculus
using numeral systems (Barendregt, 1981).

Then, we refine this notion introducing a monotonicity requirement, roughly
stating that the coding of sequences of a given length encompasses that of se-
quences of minor length, that has also a practical relevance for its natural con-
nections with knowledge representation. Next, we address the problem of eco-
nomicity of such (monotonic or not) numbering systems: a natural notion of
‘expensiveness’ is introduced, and it is shown that, due to the rich structure of
numbering systems, no most economical (viz. minimal) one can be found in the
general case.

We then relate numbering systems and machines (computational devices like
Turing or register machines). Machines act by performing some operations on
their internal memory, hence defining a class of partial functions over it. To com-
pare the computational power of a machine with other classes of functions (like
other machines’ ones, the recursive functions etc.) one must use encoding and
decoding functions. These functions play for machines the role that numberings
play for logical systems (also under the point of view of their so far neglected
study). It is so introduced a notion of allowedness that says when a numbering
system can be safely used as an encoding function for a given machine, in the
sense that it doesn’t diminish the computational power of the machine itself.
The question of economicity is then tackled again in this new context, searching
for the most economical monotonic numbering systems among the ones allowed
by a machine. The answer is in all similar to the general case, ezcept for one
case only: the two-counter register machine (the ‘smallest’ among the regis-
ter machines). For it, there is a most economical encoding that, surprisingly
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enough, turns out to be just the pioneering Godel numbering from which the
whole story began, thus showing that Godel’s original idea of numbering is not
only an elegant trick among many, but has a deeper significance.

The paper is organized as follows. After introducing some notations in Sec-
tion 2, machines are presented in Section 3. Then, Section 4 introduces number-
ing systems and monotonicity. In Section 5 economicity of numbering systems
is discussed, both in the general case and in the monotonic case. Section 6 then
establishes a link between numbering systems and encoding functions used in
computer science via the notion of allowedness, and performs the analysis of
economicity in this new context.

2 Notation

The symbols IN and IN, stand for the set of natural numbers and the set of
positive natural numbers respectively, and IN? will denote the cartesian product
IN x -+« x IN (5 times). We indicate the i-th prime with m; (viz. m; = 2, my = 3,
3 = 5, etc.). With Py, (A) we denote the set of the finite sets of elements in
A. The symbol REC} stands for all the (partial) recursive functions from IN*
to IN.

It is well known (see e.g. Davey and Priestley, 1990) that from every (partial)
order relation < one can recover the corresponding strict order <1, and vice versa.
Hence, in the following we will arbitrarily use orders or strict orders.

As usual, given a function f: A — B and an element b € B, f~'(b) denotes
the set {a € A : f(a) = b}. Also, we will often write f(C) to denote the set
{f(¢) : e € C}. Finally, the cardinality of a set A will be indicated by card(A).

3 Machines and Programs

We fix three sets of symbols: FUNC' (the function symbols), PRED (the pred-
icate symbols) and LABEL (the label symbols). LABEL is also required to be
infinite, and to have a distinguished element named START.

Then, a machine assigns to every function symbol f € FUNC (resp. to every
predicate symbol p € PRED) a partial function My (resp. a partial predicate
M) over the set |M|, which is said the memory set of the machine M.

The strings of symbols of the form

i) START: GOTO L;

ii) L: DO f GOTO L';

iii) L: IF p THEN GOTO L' ELSE GOTO L";
iv) L: HALT

with f € FUNC, p € PRED and L,L' € LABEL, are said the instructions.
A program P is then a finite set of instructions that has exactly one instruction
of type i), that is only one start instruction, and for every label L at most one
instruction beginning with that label.



P-150 MAssIMO MARCHIORI

Given a machine M, every program P defines a partial function Mp over | M|
defined in the obvious way, simply ‘computing’ the program P starting from the
(unique) instruction of type i) present in P, and using the function Mj in case
an instruction of type ii) is found, and the predicate M} in case a test instruction
of type iii) is found. The computation ends when an halt instruction of type iv)
is encountered. The formal definition is trivial but lengthy, so we omit it (see
e.g. Clark and Cowell, 1976).

This way of defining machines is absolutely general, since it can represent
all of the usual machines, like Turing ones, pushdown automata and so on (see

Scott, 1967; Clark and Cowell, 1976).

For every program P, the function Mp is defined over |M|: if we want to

compare the functions computable with M with other classes of functions having
different domain and/or codomain, two fixed encoding and decoding functions
must be introduced, where an encoding function is a computable function with
codomain |M|, and a decoding function is a computable function with domain
|M]. This way, we can compare some functions from A to B with the correspond-
ing functions of a machine M by means of an encoding function e : A — |M| and
of a decoding function d : |M| — B, taking for every program P the function
doMpoe.
For every machine M, if e and d are an encoding and decoding function for M,
let us indicate with F(M, e, d) the set of functions {do Mpoe|P is a program}.
Hence, saying that a machine M has full computational power equals to say
that Vk € IN there are functions e : IN* — |M], di : |[M| — IN such that
]:(M,ek,dk) = RECk

The n-register machine SR, has as memory set n registers Ry, ..., R,, each
capable of holding a natural number (viz. |SR,| = IN"), instructions R; < R;—1
and R; «— R; + 1 and predicates R; = 07 (1 <1 < n), with the obvious meaning
of decrementing/incrementing a register by one and testing if a register has a
zero value. The register machines SRy and SR, are readily too poor, but if
n > 2 then SR, has full computational power. Hence the most ‘economical’
register machine having full computational power is SRy, sometimes said the
two-counter register machine.

En passant, we note how the importance of SR is not only purely theoretical,
but even practical since, just to mention a few recent applications, it has been
used to give the simplest known proof of undecidability of termination for logic
programs (cf. Apt and Pellegrini, 1992) and for term rewriting systems (Bezem,
Klop, and de Vrijer, 1997), and to provide the link between many seemingly
unrelated topics in computer science (Kanovich, 1994).

4 Numbering Systems

Definition 4.1 A numbering is an injective computable function with codomain
IN. O

Note that this definition, present e.g. in (Barendregt, 1981) for A-terms, is not
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completely standard: many other authors (for instance Manin, 1977; Phillips,
1992: Ebbinghaus, Flum, and Thomas, 1984) require also that the numbering
image is decidable. We preferred here the more general definition: anyway, all
the presented results hold using the more restrictive definition of numbering as
well.

Definition 4.2 A numbering systern f|) is an assignment to each £ € IN of a
numbering fix : N* - IN. O

To avoid confusions, an historical digression on the terminology is needed.
The term “(Godel) numbering” has also been used in another context with a
different meaning, namely initially by Rogers with his seminal paper (Rogers,
1958) with the meaning of an enumeration of the partial recursive functions.
To be precise, in the aforementioned paper Rogers distinguishes between the
“usunal”™ meaning of (Godel) numbering (that is the one we employ) and his,
which he calls of “special sort”. Other later studies on the subject (until Hart-
manis and Baker, 1973), have used this name. Other works within the period
19581977 (e.g. Meyer, 1972) used the names “effective enumeration of the
partial recursive functions” or “indexing”. Finally, roughly from 1978 onwards.
the more appropriate term “programming system” was introduced (c¢f. Machtey
and Young, 1978; Kfoury, Moll, and Arbib, 1982), and has become the actual
standard (Phillips, 1992).

Definition 4.3 A numbering system fi) 1s monotonic if
Vk € n\'av(;’:lu" '1":k) € "\'k. f[k-#l](""l""w"‘?kv()) = f[k]("'.lv-- -7mk) 0

The above definition formalizes the concept that every numbering fiy) : N¥ - IN
encompasses all the previous numberings fi;; (0 < @ < k). In fact, the usual
numbering to cope with sequences of naturals (the numbering system) can be
seen just as a numbering with domain U;ew IN', thus treating sequences of
different lengths as completely unrelated objects: merely a collection of number-
ings. Here, instead, we embed sequences of lesser length into ones of greater
lengths utilizing the canonical embeddings IN* N* (k < k'), given by
(xy ..o mpe) = (xy,...,7%,0,...,0). What we are doing, intuitively, is to give
the flexibility of considering one number as a ‘space’ symbol, forgetting about
leading spaces (just like in natural language processing we can find convenient
not to treat as indistinguishable objects the five-character word ‘hello’ and the
eight-character word ‘hello ).

This notion has a precise mathematical significance too: instead of taking a
numbering with domain U;epy IN', it corresponds to take as domain the direct
limit of the sequence

NN o IN2 o IN® e
0 € 3
(where the ¢, : IN* — IN**' are the canonical embeddings (z,,...,2x)
{Z15 s Z8:0))-
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Moreover, this approach allows to arbitrarily enlarge the ‘domain of the dis-
course’ without changing everything regarding the domain: that is, if we worked
with, say, at most sequences of length k£ and we want to enlarge the input do-
main, we can use longer sequences with the assurance that sequences from the
original domain of the discourse (of length < k) are numbered exactly the same
way as before. As a meaningful example, consider usage of numbering as an
encoding function for providing inputs to some computing device: if the input
domain is extended with some optional parameters, the old algorithm has only
to be integrated to process the optional parameters when present, and not to be
rewritten as a whole algorithm from the beginning.

We now introduce the well-known Go6del numbering system:
Definition 4.4 The Gédel numbering system G is defined as
Gipf(®1y -+ gTR) =7 swg? s — 1 O

Note that G[) is monotonic as well. The ‘—1" that distinguishes this definition
from Godel’s one is simply due to the fact that it is customary to consider register
machines with registers IN-valued, hence counting from 0 onwards: if we decide
to count from 1 onwards defining |SR,,| = IN"! (and putting in place of R; = 07
the predicate symbol R; = 17 with the obvious meaning), then the *
dropped.

—1’ can be

5 Economicity

In defining whether a numbering is better (that is, more economical) than an-
other numbering, we have first of all to define what is the cost of a certain
(finite) set of natural numbers D, let’s say v(D). For instance, we could set

v(D) = E x, or some other more involved measure. Abstracting, we generalize

zeD
as much as possible requiring the cost function to be increasing, in the sense

that greater numbers have greater cost:
Definition 5.1 A (cost) function v : Py (IN) — IN is said to be increasing if
v(A) <v(B),r <s,r ¢ A,sg B=>v(AU{r}) <v(BU{s}) O

Hence, if we have a numbering f : IN* — IN, the cost of codifying a certain
set A C Psin(IN*) can be defined as v({f(Z) : Z € A}) or, briefly, v(f(A)).
Then we could say that a numbering f : IN* — IN is no more ezpensive than a
numbering g : IN¥* - IN (f < g) if

VA € Prin(IN®). v(g(A)) — v(f(4)) 2 0

(where v, the cost function, is an increasing map from Py;,(IN) to IN).

It can be proved that
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Lemma 5.2 The relation < defines an order on numberings.

Now it has come the moment to define the corresponding cost ordering for
numbering svstems. '

What is the minimal requirement we can impose on such a relation? If a
numbering system fi) is “less expensive’ than gj), then there should be at least a
k such that fig < g (e at least a numbering of fi) should be less expensive
than the corresponding numbering of g;)). On the other hand, the reverse should
not be true, that is to say there should be no k such that g < fig. This is
formalized into the following definition:

Definition 5.3 Taken two numbering systems fi) and g(), f{] is less ezpensive
than g (notation fi) < gpp) if

(Fk. Sl < 9pp) A (53K gy < flig) t
It can be proved the following:
Lemma 5.4 The relatron <1 18 a stract order on monotonie numbering systems.
Considering economicity w.r.t. <1, we obtain the following result:

Theorem 5.5  There s not a monotonic numbering systern that 1s manimal
war:t. 4.

6 The General Case

So far, we have only considered monotonic numbering systems. In this subsection
we study the structure of nnmbering svstems in complete generality, dropping
the monotonicity requirement.

The problem with numbering systems is that the relation <1 18 no more a
strict order: indeed, it is not transitive, as it is not difficult to see. Hence, we
must employ an expensiveness relation < that fulfills the minimal requirements
we have previonsly seen (e fi) € g > [11 < g1) and that is a strict order as
well. '

Another minimal requirement the relation < should satisfy is that if Vk. fix) <
gik) then f) < g (i.e. if every numbering in fj) is less expensive than the
corresponding in g(), then it should be the case that fi) is considered to be less
expensive than g by the relation «).

In view of what seen, we have the following result:

Theorem 6.1 Suppose 4 1s a strict ordering on numbering systems such that
1. fi) <y = Jiy Qg
2. (Vk. fie) < 9i) = f1) <9y

Then there 1s not a numbering system that ts mintmnal w.r.t. <.

Hence, these results show that the structure of numbering systems, both in
the general case and in the monotonic case, is so rich that there are no optimal’
numbering systems.
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7 Relating Numbering Systems with Machines

So far we viewed numbering systems as abstract objects: however, there is a
natural way to relate them with machines, namely to consider them as encoding
functions. This standpoint leads us to consider what numbering systems can be
used by a given machine, and what not.

First, notice as properly speaking a numbering system cannot be used as
encoding for register machines since it outputs to IN, whereas an encoding for a
machine A must have as codomain |M]|.

Hence, given a particular machine M we need to fix some embedding e, (i.e.
an injective function) from IN to |M].

Definition 7.1 A numbering system e[} is allowed by a machine M (w.r.t. ep)
if
Vk € ]I\',H(lk,f(ﬂr[,f—’[k} O("M,dk) = REC; O

In the case of register machines. since |SR,| = IN", we can simply use as
cgRr, the natural embedding 2, : IN — IN" given hy m — (m,0,...,0).

The nice fact is that this choice is not restrictive, since this natural embedding
enjoys the following universal property:

Theorem 7.2 If a numbering system 1s allowed by SR.,, w.r.t. some embedding
egR. » then it is also allowed w.r.t. 1,,.

In the sequel, we will therefore omit mentioning 1, which is assumed to be
the understood embedding for SR,,.

We could so try to weaken the richness of numbering systems just seen in
Theorem 5.5 by considering only (monotonic) numbering systems allowed by a
given machine. It turns out that for all usual machines (e.g. Turing machines
etc.), even imposing the allowedness requirement there are no most economical
(monotonic or not) numbering systems. The only exception is, noteworthy, the
case of the two-counter machine SR.,.

Before going on, we need a preliminary definition, which generalizes the usual
notion of injective function:

Definition 7.3 Let f: IN* 5 IN, and I = {#1,.-.yim} a subset of {1,...,k}.

Then the function f is said to be I-injective if (z;,,..., %) # (2} ,...,%} )
implies that f@r,.coa®iys e Biae s Br) F FB1s0e - @) 500y yeev @), O

Through a not easy proof, it can thus be given the following complete char-
acterization of the numbering systems allowed by SR..

Theorem 7.4 A numbering system f|) is allowed by the two-counter register
machine if and only if for every k € IN

Ry (@905 im0 ho(Zy;aimn A, (Bigeany
fg(@1, o 2) = g ) gl b ) oy,

where



ON GODEL NUMBERING SYSTEMS P-155
® (I Z 1
e by s an integer
e my > 1
® (i,...,(m, are coprine mntegers
o hy,... hy, are computable functions

and there is a mapping Sy : [1,k] — [1.mg] such that Vj € [1,mg] hy as I;-
wmjectie, where I; - \‘\g‘(.})

This result, besides being important for its own, allows us to state the fol-
lowing:

Theorem 7.5 The Gdadel numbering system Gy as the minimum (w.r.t. <)
monotonic numbering system allowed by SR, .

Hence, Gy is less expensive than every other monotonic numbering system al-
lowed by SRy.

As said previously, the character of exception of this result is strengthened
when we try to study what happens for the other register machines, since we
have:

Theorem 7.6 If n > 3., every numbering system as allowed by SR,,.
and so by Theorem 5.5 we obtain

Corollary 7.7  There 1s no nmanamal monotonic numbering system w.r.t. <1 for
the register machimes SR, when n > 3.

The same happens when turning to all the other usual machines like Turing
machines, Post machines and so on: Following the same headlines here presented
for the register machines, it can be proved that

Theorem 7.8 There 15 no mantmal (monotonie or not) numbering system w.r. 1.
< for every machine' different from SR,

Thus, these results show that the structure of allowed numbering systems
is extremely rich, such not to allow economical elements. Nevertheless, there is
only one case where things are different: the two-counter register machine (the
simplest among the register machines). For it, there is not only an economical
element, but even the most economical one, which turns out to be just the
first pioneering numbering system introduced by Gaodel. In conclusion, what
seen somehow justifies the fact that so far the study of numberings per se has
been neglected: we have shown that their structure is so rich that it does not
allow economical elements in any case, but for one important exception, where
it unexpectedly reveals one of Kurt Godel's jewels.

"Mere ‘every machine’ means every standard machine introduced in the literature, e.g

. all
the machines in (Clark and Cowell, 1976; Hoperoft and Ullman, 1979)
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Abstract. lu this article we apply a method for encrypting messages
based on the properties of the quasigroups. According to the analysis
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1 Introduction

In today modern Internet civilization more than ever we are faced by the need
ol fast and secure communication. The security in the communication is imple-
mented mainly through two types of algorithms: 1. Algorithms that nse public
keys [3.13, 2] (a typical example is the well known RSA algorithm) which are
appropriate for offline communications and for authentications, but they are usu-
ally slow for online communication. 2. Algorithms that use secret key (a typical
example is the so called “Data Encryption Standard - DES"[4, 12, 10]), which
arc more appropriated for online commmunications. The encoding method we are
proposing in this paper is of the second type.

Of course, when we are dealing with the algorithims with secret key, one
needs a secure channel for key transfer, and that problem can be solved using
some algorithim with public key. Communication with secret key implies that for
every couple (or group) that wants a secure communication, a separate secrel
key should be generated and memorized,

The method we deseribe here uses secret key that represent a quasigroup
cipher. In fact, quasigroups have very useful properties which can be used for
construction of functions for encryption and decryption. The problem of obtain-
ing suitable quasigroups is also considered in the article [7] where it is shown
how. by using isotopes of quasigroups, one can produce (n!')? different quasi-
groups on a carrier of power n. Here we use a modified Hall algorithm [6] for
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generating n x n Latin squares and there are at least n!l(n — 1)!... 21! such
latin squares. Clearly, any Latin square can be viewed as a quasigroup, and vice
versa. We also mention here that [5] contains a method that can be reduced to

the one considered in this paper.

2 Basic mathematical definitions
Here we give some basic notions for quasigroups.

Definition 1. A gnasigroup is an algebra ((),*) with one binary operation sat-
isfying the law: (Va,0 € Q)(3r,y € Q) axr =bAy*xu="b

Definition 2. A &k x n Latin rectangle on an alphabet A = {ay,... a,} is a
mateix with entries a; ; € A, 1= 1,2,.. ..k, 7 =1,2,...,n such that each row
and each colunmm consists of different elements of A, If & = n we say a Latin
square instead of a Latin rectangle.

It is clear that if A = {ay....,a,} is a carrier of a quasigroup (A, *) then
its Cayley table can be considered as a n x n Latin square, and vice versa. This
correspondence allows us to use any method of constructing a Latin square for
obtaining a quasigroup. One such method gives ns a corollary of the well known
P. Hall’s theorem ([6. 8]), which states that any & x n Latin rectangle can be
extended to a (k= 1) x n Latin rectangle, for each & = 0,1,...n— 1, and the
extension can be made in at least (n — k) ways. As a consequence we have that
there are at least n!(n — 1)1 . 21! n x n Latin squares over an alphabet with
cardinality n. A table of the mbers of the n x n Latin squares forn = 1,..., 10
is given in [L1].

Proposition 3. Guven a quasigroup (@), *) define a binary operation \ on () as
follows: x\ y =z <= xxz=uy, forallz,y € Q. Then the groupoid (Q),\) s
also a quasigroup. a

Definition 4. We say that the operation \ is dnal to *, and that (), \) is a dual
quasigroup to (@, *). We also say that the algebra (2, *,\) is a quasigroup (-an
expansion of (@, *)).

Proposition 5. [1] The quasigroup (Q), *,\) salisfies the following identilies: x\
(ex2y)=y 2x{@\y) =y O

3 Description of the method

Lett A = {ay,as,...,a, }(n > 1) be an alphabet, and let (A, *,\) be the quasi-
group defined as in the previous section. Denote by AT the set of all nonempty
words of the alphabet A. Define two unary operations f. and fi on AT as follows:
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Definition 6. Let ;€ Ak > 1. Then

folwyus o oup) = vpns ..o

. |

= M =iy R Ay Wi = Wy B Wy = 1,200, b=, (h
ACupws oo ) = vpog oo (2)

ooy =ay Ny, Vi = \ Uiy, 1= 12,000 k=1, -

We say that the sixtuple (Ca \cay, fo, ) is a quasigroup cipher over the
alphabet 1.

Lemama 7. I/ (Ace Noa foo ) s a quasiqroup coipher over the alphabel A =
T ay b then fyo fo =14 where Vg s the ddentical map on AY and o s
the composttion of maps.

Il

Proof. Let g € Aok = Fand fo(uycoowg) = ooy o fulug oooug)

Ao ccomg) = wyooowg. Then we have: oy = ay # wy, vig) = 05 % Uigy, w) =
iy Ny, gy = v N v for i = 10200, k= 1. So. by Proposition 5w, =
ay \ (g wrg) =y, iy =\ (050 i) = gy for i = 1,2, k=1, 0

Now itas quite elear from Lemma 7 that we can take [, = [, as an encoding
function, and [ = [\ as acdecading function, for enciphering and deciphering
aver an alphabet A0 Namely, if e A dsa plain text, then fo(u) is its cipher
text, and as we have scen, ([ (1)) = .

Frample 1o Let 4 = Jacboef and let the quasigronp (A v) e (A \) be defined
by the Table I Let ay = a and u = beaaabbea. Then the eipher text of wis o =

Table 1. The guasigroup (A e\

la b '\tl/ln
o I'.t o ll: ;I IJ-
’lltl/l ’lll: o
cla b cla b

J(u) = ceabebaab. Applying decoding fanetion fy on v we get N (ecabebaab)
beaaabbea = n

4 Some properties of the method

At lirst, we should note that the above method produces a cipher text with the
same length as the plain text. Moreaver, cach letter of the plaim text is encoded
by a single letter. and in fact the encoding is of a stream nature. That is the
reason why this method s appropriate for a fast online compmumication. When
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computer realizations are considered, in comparatione with DES algorithm which
nses several rounds of simple computations, this method needs only access to
the memory.

Another nice property of this method is its robustuness on errors. Namely, we
hiave:

Proposition 8. Lelu = wjus ... up € AT be a plain teat. v = fo(u) = vivy . .. 0p
ils cipher text and o' = vyoy o ovi_yvfvigy oo (v) € A). Then

f\(u’) = UjUy - . .'11.,;_,'(1,’,;11(,:4_1 Wik - - Uy
Jor some ujui, € A

Proof. 1t follows directly of the definition of the decoding function f. O

The last property implies that this method can be used for designing secure
databases, the security being levelled af the contents of the fields of a database
[9].

As we already mentioned, this method can be used for online digital com-
munications where data are represented by 8 bits, 1.e. we take the alphabet

= {0,...,255}. In that case there are at least 256!1255! - 2111 > 1078790 (nasi-
groups. Now, suppose that an intruder knows a cipher text v = vy ... v, =
feloy o), where a2y .o represents the unknown plain text. Then for recov-

ering the quasigroup (A, #), which is the key of the encoding method, he(she)
should solve a system of equalities of the form:

0 =y ke

Ny = U] * Lo
Vip = Ve | ¥ Ve

But, the ahove system of equalities has as many solutions as there are uasi-
groups of order 256, which means that the method can successfully resist on the
brute force attack.

Unfortunately, if an intruder knows both the plain and the cipher text,
he(she) can easily recover the quasigroup (A, ). To avoid this weakness of the
method we propose ftwo (or more) quasigroups as a key for the encoding. Namely,
let (A, %) and (A, ") be two different and not mutually dual quasigroups, with the
corresponding quasigroups ciphers (A, ap, +,\, fu, ) and (A a}, ¥\, fur, fy1).
Then as encoding and decoding functions we take

.ft' = ,/"*’ o .f*7 f(l = .f\ o ./:\1'

Now, if the plain text u = uy ... uy and its cipher text v = vy .. vp = fo(uy .. .oup)
are known, for finding the key consisting of two quasigroups (A, *) and (A. ),

the intruder should solve a system of equalities of the form

B =l ¥ U1; By =FL Uy <owy T = Th1 *Up (3)
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oy =oah & vy =y By ey O =opay & B, (1)
WP 0] 5 s ¢ 5 55 8 reoare unknown. 10 (3) and (1) are considered separately,
then any quasigroup (A#) (oo (A7) 15 a solution of (3) (i.e. (4)). But, not
any pair of quasigroups is asolution of the system of equalities (3) and (4). This
means that il one wants to solve the above svstem of equalities, he(she) should
choose an arbitrary quasigroup (A, +), and alter that to check il the equalities
(1) are satislied in some quasigroup (AL +"). OF course, one may not generate the
whole quasigroup (A+) for checking the satistiability of (1), sinee during the
process of building of (A, +), simultancously can be checked (4). Nevertheless,
one should make as many attempts as there are quasigroups (A, +),

“l'l T T 1 T

0.12 =]

0.1 R

(0.0N -

.06 =

0.01 -

0.02

) I | IR —
150 200 250

Fig. 1. Distribution of characters found in usual TRX e (solid line) and the distribo-
tion of characters found in its cipher text (doted line).

I'he resistance of the method on statistical attacks seems to be very well. In
Figure | we represent the disteibutions of the characters of a plain text and of its
cipher text, and the nniform distribution of the characters of the cipher text is
evident. We note that the same uniform distributions ocenrred in every of more
than 100 experiments we have made. The same phenomena appears when pairs
and triplets of characters are considered

The problem of constructing a random quasigroup of order s easily soly-
able. In fact, we can produce such a quasigroup by using the algorithim for finding
a system of different representatives of a family of sets [6, 8].
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5 Conclusion

In this article we deseribed a method for enciphering messages that nses frans-
formations defined by quasigroups. The method is extremely resistive on the
brate force or any statistical attack, as well as by the attack when both plain
and cipher text are known. Beside that, it is robust on errors. Enciphering can he
done very fast and the corresponding ciplier text has the same length as the plain
fext. In practical implementations it gives cipher texts at the output that has
nuniform distribution. The method is practically implemented in progranmuming
language C for online commmunication as an utility for UNIX.

We note that instead of quasigroups, one can use left cancelative finite
groupoids (A, *). since then the equations a « 2 = b has the unique solution
r = a \ b. Unfortunately, in this case had statistical properties may appear.
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an arbitrary graph ¢/
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1  Notation and Preliminaries

Throughout the paper, by a graph we mean a sumple nondirected finile graph
without loops. Given a graph 7/, V((/) denotes the set of vertices of ¢ while
E(C) denotes the set of edges of (2 Let n(G) = [V(G)] and () = [E(G)]. By
dei(v) we denote the degree of a vertex v in (7. The subseript is usually omitted
if the context is unambiguons. Let 8(C7) = min, ey 0(v). By a subgraph we
mean a subgraph of the given graph induced by a set of vertices. H < (¢ stands
for “H is a subgraph of (711 W C V((/), G[W] denotes the subgraph of ¢/
induced by W, Let sub v = [(H - H < (. Am(H) > 0}. Let w((7) denote the
chromatic mumber of /. Let v € V() be an arbitrary vertex. (/ — v is a graph
obtained from ¢ by removing the vertex v and all the edges incident to v. A
vertex v € V() 1s solated i o (v) = 0.

This paper considers an integer mvariant of graphs which we shall refer to
as the mfimum of a graph:

inf (¢ = max d(H).
H<(
Section 2 lists several graph-theoretic notions that are connected to the infimum

of a graph and gives the motivation for the result. Section 3 presents a O(n?)
algorithin to compute inf ¢ for arbitrary graph ¢/

P-163
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2 Motivation

Players A and B play the following game: each player is given a copy of a graph
( and player A marks an edge ¢* € E. Player B is required to find the edge ¢*
by a sequence of tests. Each test 1s a set S C V| and the answer to a test is 0 if
e* NS =0 or 1. otherwise. Let @((¢) he the minimum number of tests required
to find any edge in (+. A graph ' is called almost 2-optimal iff

[log, m((1)] < () < [log, m(G)] + 1.

It is proved in [1] that a graph (¢ is almost 2-optimal if inf (+ < 5.

The algorithmic nature of search problems on graphs is, however, sharply
contrasted with a “non-algorithmic” definition of inf (7. This contrast initiated
an attempt to provide an eflicient algorithm to compute inf (¢. Before we turn
to the algorithm, let us look at a few more graph-theoretic concepts which are

connected to the infimum of a graph.

The vertex-arboricity, a,((7), of a simple graph (7 is the minimum cardinality k
of a partition {Wy, ..., Wi} of V() with the property that induced subgraphs
G[W;] are forests for all i = 1... k. Similarly, the edge-arboricity, a.((}), of a
simple graph (7 is the minimum cardinality ¢ of a partition { /4, ... Fy} of E(()
with the property that induced subgraphs G[F}] are forests for all j = .../
(ziven a graph (7 with at least one edge, in [2, 5] and [3, 5] the following bounds
for a, ((7) and a.((7), respectively, are given:

an(C) < 1+ \fniGJ

1 +inf
and a.((7) > [im—1 :

2

In [4, 5] one can find the following upper bound for the chromatic number of a
graph: x(() < 14 inf (.

3 The Algorithm

Given a graph ¢ with m(G) > 0, let 6T(() denote the least positive degree of
a vertex of (7, i.e. 01 ((7) = min{ég(v) : v € V(G) A b (v) > 0} If m(() > 0,
then, obviously, inf (¢ = max{é% () : H € sub (;'}.

We shall now present another approach to inf (7 based on a sequence of
vertices of “small” degree. This sequence can be easily determined. As we shall
see, considering such sequences suffices to determine the infimum. Let us start
with a technical definition.

Definition1. Given a graph (7 with at least one edge, consider a sequence of
vertices vy, ..., v and a sequence of subgraphs Ag, ..., Az, Aryq of (¢ constructed
recursively as follows:

(i) An = (.;
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(ii) v; is any vertex of A; such that o4, (v;) = 6T (A;), i=0...(
()11) ."1,’.}.1 = ‘, —
(iv) m(Ar) > 0 and m(Argy) = 0.

A sequence vy, ... v is called 0,5, -sequence of vertices, while Aq, ... A, Ay
is called &y, -sequence of subgraphs of (/. We say that the two sequences are

('()l'l'(‘.\'])('\ll(lill}.’}

Note that d,-sequences are not unique. What follows is a lemma which
connects dip-sequences of vertices with subgraphs of (.

Lemma2. Guoen a graph (¢ owilh al least one edge, arbilrary by, -sequence
Uiy w0 s v of vertices of GFoand a subgraph H o of ¢ there s an anteger k€

P'roof. Remove all the isolated vertices from H and denote the new graph with H’.
Obvionsly. m(H"y = m(H) > 0 and " € sub (/. Let us show that there is
a vertex v such that v € V(H'). Suppose. on the contrary, that V(H") N
{vo, ... med =0 Then H' < (' —wvo—...—ve = Argr. But m(Aeqy) = 0, while
m(H") = 0. Contradiction.

[t is now easy to see that v € V(H') implies v, € V(H) and oy (vy) > 0.

Theovem 3. Lol (7 be a graph wilh al least one edge. Lel vy, ..., ve be a Spin -
scquence of vertiees of Goand let Ay, Ay Argr be the corresponding 6, -
scquence of subgraphs of ¢/ Then

¥

inf (i = max{84, () :1=0...8}.

P'roof. (=) Since sub (¢ D {Ag..... Ar}, we have inf (¢ > max{ét(A;) : i =
0...0}) =max{ds, (v;) :i=0...¢}.

(<) Firstly, we show that for each H & sub (7 there is an integer j such that
SY(HY) < bda (vj). Wolooog. we can assume that [/ has no isolated vertices,
According to lemma 2 there is an integer & such that ve € V(H) and dg(vg) = 0.
Let j be the minimum of all those k's. V(H) O g, ..o 05} = 0 and H <
(F—rty— .=y = A, Fromoy; € V(H) and g (v;) > 0 one easily concludes
that 8Y(H) < dy(v,). Since H < A;, we have dy(vj) < da,(v;).

Therefore, for each 1 € sub ¢/ we have 3% (H) < max{és (v;) i =0...(}.
Taking the maximum of the lefthand side of the inequality over all /€ sub ¢/
we get inf (7 = max{8*(H): H € sub(/} < max{ds (v;):1=0...[}. .

The previons theorem is straightforwardly interpreted in the form of an al-
gortthm
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function if(( : Graph) : cardinal;
var

d : cardinal;

v vertex:

begin
d = [);
while m(() > 0 do
v o= a vertex of (v with the least positive degree;
d = max(d, b (v));
(==
end;

return d
end mnf

The time-complexity of the algorithm is ()(7;3). where n = n((7), which justifies
the adverb “efficient”.
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Abstract. We study an intersection type system which is a restriction

ol the intersection type discipline. This restriction leads to a purely syn-

tactic and completely characterized notion of principal types. Using the
equivalence between principal types and normal forms, we define an ex-
pansion operation on types which allows us to recover all possible types y
for any normalizable A-terin. The contribution of this work is a new and
simpler delinition of the operation of expansion and the description of

the structure of principal types.

1 Introduction

In the approach of untyped A-caleulus as a model of programming langnages,
Curry's type svstem is the hasis of type systems of programming langnages like
ML Indeed, Curry's tvpe system has the principal type property .e., for each
tvpable A-term there exists a type, the principal type, from which we can find
all possible types for this term. However, this type system has some limitations:
polvmorphic abstractions are not allowed and types are not preserved under
H-conversion.

To supply a type system that does not have these drawbacks, the intersection
type discipline has been developed. Using intersection types, terms and term
variables can have more than one tyvpe. This allows polymorphic abstraction,
and types are invariant under 4-conversion of terms i.e., two A-terms which are
A-equivalent have the same type. Moreover, intersection types characterize nor-
malizable Aterms: a term is normalizable if and only if it is typable. Intersection
tvpe systems are therefore very expressive.

However, the price of this expressiveness is the loss of the principal type
property in the classical sense. As a matter of fact, in order to find all possible
types of a term from a unique type, we must have more than just substitutions.
In [2, 4,7, 8 a property which is similar to the principal type property is proved
by adding new operations on types. The most important and the most complex
of these operations is the expansion which is essential for the type inference. Iu
fact, expansion is a complex operation on pairs. As S. van Bakel explains in [7],
the expansion of a sub-term p of a type p' replaces the oceurrences of pin p' by
a mumber of copies of that sub-term. To be applied an expansion must therefore
specify the type to be expanded and the nnmber of necessary copies.

* Einail: {Emilie.Sayag ,Michel.Mauny}@inria.fr
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Intuitively, expansion corresponds to the duplication of a sub-derivation in
a derivation tree. So it is not enough to duplicate one type: we must also copy
all the types of this sub-derivation. Until now, this point was the source of
the complexity of the definitions of expansion [2, 4, 3, 7]. Even if the need of
duplicating more than one type is well understood, the definition of the set of
types to be copied, is still a difficult problem. So far, no convincing justification
has been given.

In this paper, in order to fill this gap, we propose a new approach to inter-
section types. The work presented here is based on the intersection type system
introduced in [5]. This tvpe system is a restriction of the one presented in [1]
in the sense that mtersections occur only in the left hand side of arrow types.
In [5], we have defined a new notion of principal type, corresponding exactly to
the notion of normal form in the A-calculus. We now extend this notion to all
normalizable A-terms and using the structural properties of principal types that
we proved iu [5], we give a simpler definition of the expansion operation than the
oune proposed in [2, 3, 7, 8], and a simpler proof of the existence of a principal
tvpe for each normalizable A-termn.

The general outline of this paper is as follows: in section 2, we recall the
type system of [5] and its main properties. In section 3, we define the operation
of expansion and we give some of its properties. The main result of section 4
states the principal type property for normalizable terms and section 5 gives
an overview of the related works. Finally, section 6 contains a few concluding
remarks.

2 The type theory

For more details about this section, one can see [5]. We recall here only the main
definitions and properties. The set of types is defined as the following:
p€T i=a type variable

[{p1,- o spnl — plorn >0
We assume a countably infinite set TV of type variables.

Definition 1. We define the positive and negative occurrences of a type variable
« in a type p by induction on the structure of p in the following way:

- if p is a type variable, then the possible occurrence of « in p is positive

- if p=[p1,...,pn] — p', then the positive (resp. negative) occurrences of «
in p are the positive (resp. negative) occurrences of v in p’ and if n > 1, the
negative (resp. positive) occurrences of « in p, fors=1,...,n.

Definition 2. Let p be a type in 7 and « a type variable. We say that « has a
final occurrence in p if one of the following cases is verified:

(&3

-p
=P

[p15---ypn] = p and a has a final oceurrence in p'.
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Fowspsdm o))} (VAR)

F e - M 2441 i

F e i AR = i 1A L 150 (Ans)

- — (n>0)  (App)

Fig. 1. Inference rules

Definition 3. Let p € T, the set Lo(p) of left sub-terms of p is defined by
induction on the structure of p, in the following way:

i p=q, Lo(p) = 0
il p=[pryeeeypn] = 0 Lo(p) = {p1y- . pn } U Lo(p').

We also define a mapping Type Var from types to sets of type variables. This
function returns the set of type variables which oceur in a type.

Definition 4. A constramt environment A, is a mapping from the set V of term
variables to the set of multi-sets of types.

As usual, we can restrict the domain of a constraint environment:

A\ A{r}(y) {..\(;.,) ify #u

[] otherwise

and extend it: (A} + Ay)(a) = Ay (2) U Ay (), for all x € V
where U is the union of multi-sets.

Remark,. We use metavariables x,y, ... to denote term variables and o, /4., . ..
for type variables.

The type assignment relation relating A-terms,; types and constraint environ-
ments, is defined in figure 1. We write the constraint environnement A at the
right of the relation symbol to insist on the fact that A is computed during type
inference instead of being a simple argument as it is in more classical systems. We
notice that in the rule for applications, if n = 0 then there is only one premisse
in that inference rule and the argument of the application does not interfere in
the derivation. As an example, we can derive:

FArdy.a(y =) |8l = 9] = [[o] = 8] = v:{}

The type inference algorithm for normal forms is presented in figure 2.
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o Infer(N) =
e Case N =

let o be a new type variable
return (o {r 0]}
e Case N = Au. N,
let (p1. A7) = Infer(Ny}
return {4, {r) — o, A\ {r})
eCase N =+ N, ... N,
let (pr, 1) = Infer(Ny)

(s, Aw ) = ]'II’/.FI'(;’\‘,, )
o be a new type variable

return (o {a [ — - — pai— o= Ay == Ay

Fig. 2. Tvpe mierence algorithm for nornal fornins

3 B-types

We now study the structure of pairs which are closed nnder expansions.

We give mntually recnrsive definitions of 7, and 7,. T); s the set of the type
constraiuts of term variables, that is the set of types which occur in constraint
environnements or in the left hand side of arrow types. 7, is the set of tvpes
of A-terms, that is the set of tvpes which occur in the right hand side of arrow
tvpes.

e '.Th/ =y
L3 4 5 2 5 aiflin ] = W
with n > 0, Vie {1,..., ny, p, € Ty, Type Var(p, ) 0 Type Var(v) = 0 and
Ve {1,...,n} such that j £ i, TypeVar(p,) 0 Type Var(p,) = 0
e Ty v=w
| [1/1,...‘1/,,} =3

with o > 0 and Vi € {1,....n}. v, € T, rom now on, metavariables v and

denote elements of Ty, and 7, respectively.
Iu the following, we alwayvs studyv pairs of types and constraint environ-
nements. In order to easily handle these pairs, we define B-types from 7j; and

7,, in the following way:

v = with 0 >0

The term variables of constraint environnements disappear to simplify the no-
tation and becanse they don’t play a significant role in the following. We nse a
double arrow to link constraint environnements and types to highlight the simi-
larity between the type constraints and the types on the left hand side of arrows
in types. So we extend easily to B-types the notion of sign of an occurrence and
Type Var.

The notion of left sub-terms does not take into account the full recursive
structure of a type. We now define a notion of generalized left sub-terms, following
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the recursive structnure of tyvpes to consider all possible sub-terms which are to
the left of an arrow at any level in the recursive structure of a type,

Definition 5. Let {7 he a B-tvpe, we define the set L(07) of generalized left
suh-terms of U7 in the following wayv:

Lo(l7) {wy, ooy U L) i T7 l‘”\""“”l az
=¥ >0, Lo(U) = U.cp._.qn Lolp)
- L7 = U, 5 £nll7)

Definition 6. A B-tvpe (7 is closad if each tvpe variable of Type Var(l7) has
exactly one positive ocenrrence and one negative ocenrrence in (7

Definition 7. Let [7 2T vy l=e e be a B-type, U is finally closed if the

variable o in the final ocenrrence of gis also in the final ocenrrence of a tvpe
which s element of L, (07)

Detfinition 8. Let 17 he a B-tvpe. {7 is manamally closed if there is no closed
B-tvpe strictly held 07

The following definition gives a short way to talk about the three previons
properties simultaneons|y,

Definition 9. Let I7 |vy.ooow] 2 he a B-type. We say that {7 is complete
if {7 0s closed. tinallv closed and minimally closed.

Definition 10. We sav that 17 s a ground B-type iff 17 is complete and if it s
one of the following forms

[ i;;] >p with p e [.,H]’/_I

U~ vy vy >ocand e e {1, .1 h such that v, has the following shape
| r I ",
Wy s oo iy ') = roe = fging oo o pigP] =
with p > O and S(EY),  pao0 o apartitionof [y, cooow v e, |
such that each EY s’ is a ground B-tvpe.
i} [ye... o= Vnsre ooy ) = ot with vy vy ] e’ A ground

B-l\‘]w

Remark, The partition (EY), pa1 o, s unigue. Since {7 s closed, each type
variable has only two ocenrrences in {7 and we have no choice on the definition
of each I:

Exrample 1. [o,l(] — [i] — A, [n] — ,1_”.:] »& is not a closed B-tvpe, hat
([yi:v2) = [4] = & 0] — A,o,9,792) 28 is a ground B-type. [[[o, 0] — 3] —
5. 8] = [8]]=>~ is closed, finally closed hut not minimally closed
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| Clos(u, 1) = |

e Case I’ = [p|=p i
return [p] !

e Case [T = [1/1... ,l/nj:>ry i
letie{1,..., n} such that v, = Ul,: e = — U";w — ,M’p"/‘}:”

such that Vj € {I,...,ph,Vk € {I,...,n;}, E‘:‘:w:l; is a ground B-type
[ if dj, k such that p = /A,;'
‘ then return E? else
if 35, k such that p € E(E::ﬂ:.f) N T,

|
let (E¥);z1.. pk=1...n. the partition of [vy,...,vi_1,Vig1,. .., Un
p s yeea Py vrseTg I ) ) )
|
|
then return Clos(s, E;":>/1,§'} |
h 1

else fail
| @ Case l7 = [v1,...,un]=[tnt1,. -y Untm] — 1
1 return Clos(pu, V1, ... Unam|= '} i
J

Fig. 3. Closure algorithm

In order to define the expansion operation, we need to describe several further
notions and prove some properties about the structure of ground B-types. The
complexity of the expansion operation comes from the definition of the set of
tvpes that the expansion must duplicate. The expansion operation corresponds
to the duplication of the tvping derivation of a sub-term in a derivation tree. So
all types of this sub-derivation must be duplicated.

The contribution of this section is precisely the definition of this problem-
atic set of types. The justification of this definition is obvious according to the
previous results about the structure of principal types [5] and B-types.

We define in figure 3 an algorithm constructing the multi-set of types that
we must duplicate when we expand a type.

Lemma 11. Let U be a ground B-type and p € L(U)NT,. Clos(p,U) is well-
defined and verifies the following conditions:

Clos(p, U) C L(U) N Ty,

- Clos(p.U)=p is a ground B-type

- Clos(p1,U) s the unique sub-multi-set of L(U) N Ty, which verifies the pre-
nons condition. ‘

An expansion makes a number of copies of several types. We want each copy
of a type to be disjoint from all others, 7.e. two copies of the same type have no
common type variables. In order to be precise, we define specific substitutions
which will make the copies of types exactly as we need.

Definition 12. Let S be a substitution, we say that S is a renaming substitution
if for all « € Dom(S), S(«) = 3 where 3 is a type variable and S is injective on
its domain. Furthermore, if Range(S) is a set of new type variables, we say that
S is a fresh renaming substitution.
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Definition 13. Let p be an integer. For all types 1 in 7, we define an operation
of expansion of p, on the ground B-type U, written £, ,, by:

U if g L(U)
N —
E(n-m([ )= {U’ otherwise

where U’ is obtained from (7 by replacing each occurrence of an element v of
Clos(p, U) by Ry(v),...,Ry(v) and p by Ry(p),... . Rp(p), if Ry,... R, are p

fresh renaming substitutions of domain Type Var( Clos(ju, U7)).

We remark that since the renaming substitntions Ry, ..., R, are not unique,
the expansion of p in U7 is defined up to a renaming. Moreover. we make no
hypothesis on p. If p = 0, the expansion E, ,) removes all the oceurrences of
and of the elements of its closure.

Example 2. E \([[7] — [A] = 6, (o] = B a,9]=6) = [[vi 2] — [4] = & o] —
’{~"77|772]$b

Since our work is essentially based on the structure of types, we want to
prove that expansions do not change this structure. So we prove that the set of
ground pairs is closed under expansion.

Lemma14. Let U be a ground B-type, € T,, and p an integer. Then. Eqp,o(U)
s a ground B-type.

4  Principal typing of normalizable A-terms

This section states the existence of principal types for all normalizable A-terms
in corollary 17. The interest of this section is not the result itself, but its proof
which is conceptually much simpler than the proofs in [2. 4, 7, K]. Here we are
only interested in normalizable A-terms. Thus, thanks to the stability of typing
under fJ-conversion [6], it is enough to use normal forms. We do not need to
introduce approximants which significantly simplifies the proofs.

The substitution and expansion operations are both necessary to find a pos-
sible pair for a normal form from its principal pair. However these operations
must be applied in an appropriate order.

Definition 15. We name chamn a composition of substitutions, expansions and
renaming substitutions, of the form S, 0...085,00,,0...00, where S, is
a substitution for ¢t = 1,..., n and O, is either a renaming substitution or an
expansion for j = 1,... m.

Theorem 16. Let N be a term i normal form such that W N : pu: A If
Infer(N) = (pp, Ap) then there eaists a chain C such that C(A,=>p,) = A= p.

Proof. By induction on the structure of N,
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If N =, by definition of Infer and the chain is only a substituion of a type
variable by .

If N = A Ny, the induction hypothesis gives the chain .

If N = » Ny...N,, we can compose the chains given by the induction
hvpothesis for each N,.

Corollary 17. Let ¢ be a normalizable term such that b e 0p A, N ats nor-
mad form and (. Ay = Infer(N). Then there cansts o chan C such that
*ig ) = A=,

5 Related work

The authors of [2. 4. 7. 8] introduce a notion of approaimants, also named A-
Q-normal forms. and define principal tvping for these extended normal forms
hetore generalizing to A-terms using an approximation propertyv, ie. BF e pif
and onlv if there exists an approximant a of ¢ such that B F a : . S Ronchi
della Rocea proposed a semi-algorithm for tvpe mference m [3]. These results
give important theoretical beuefits. but nnfortunately, theyv provide a good un-
derstanding neither of the structure of principal tvpes nor of their characteristic
properties. Furthermore, the semi-algornithin proposed in [3] is not practical be-
canse of its conceptual complexity.

As far as we know, the work of S. van Bakel |7, 8] is the first real advance in
the simplication of the presentation of the immtersection tyvpe discipline since the
initial presentations. Furthermore, in (7], S. van Bakel defines an intersection type
svstemn close to the one introduced in [1] with the same partial order relation
on tvpes. He studies the existence of principal tvpes for this svstem. He was
induced to define several sub-sets of the set of pairs of a tvpe and a basis,
ordered by inclusion. His set of grownd pawrs is equivalent to the set of ground
B-tvpes that we define and his relevant intersection fvpe system, presented in
[8]. is pretty closed to the one presented here. In this work., we concentrate
on practical aspects of intersection types, leaving out filter A-models. This led
us to study the relationship between principal intersection tvpes and A-normal
forms [5] and to propose an operational definition of the expansion operation,
while preserving the fundamental properties of intersection tvpe systems: all

normalizable A-terms have a principal type.

6 Conclusion

[u this article, we take advantage of the structural properties of intersection
tvpes to provide simple proofs of the principal type property for normalizable
A-terms.

We propose an intersection tvpe svstem in which expansions and substitu-
“tions are enough to find all possible tvpes of a normalizable A-term from its
principal type.

These results shed a new light on intersection tvping , which can be presented
through principal types isomorphic to A-terms in normal form.



S'l'lf"l"|'l'li,\l, PROPERTIES OF INTERSECTION TYPES [',[T.')
References

I Tenk . Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. - A filter
lambda model and the completeness of Lype assignment. Journal of Symbolie Logic,
1R(4):931-940, 1983

2. Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Principal type
schemes and A-calculus semantics. In LT Seldin and J.R. Hindley, editors, 7o
113 Curry: Essays in Combinalory Logie, Lambda-caleulus and Formalisin, pages
536560, Academic Press, London, 1980,

3. Simona Ronchi Della Rocca. Principal type scheme and unification for intersection
tvpe discipline. Theorelical Compuler Science, 59:181-209, 1988,

1. Simona Roneli Della Rocea and Betti Nennerio Principal type schemes for an ex-
tended type I]wnr.\'_ Theorelieal Compuler Scrence, 28: 151169, 1984

S0 Emilie Savag and Michel Manny. Characterization of principal types ol normal forms
i an intersection type systern. ln Vo Chandro and Vo Vinay, editors, Proceedings of
Sveteenth Conference on Foundations of Software Technology and Theorvelieal Cormn-
puder Scuence, volume 1RO of Lecture Noles in Cornputer Scvence ,\‘])Fill){l‘b\-"rl?lg.
1996

6. Fmilie Sayag and Michel Mauny. A new presentation of the intersection type disci-
pline through principal typings of normal forms. Technical Report RR-2998, INRTA |
1996. available on our web site hittp://pauillac.inria.fr/” sayag/re.htinl

-4

Steffen van Bakel. Principal type schiemes for strict type assignment system.  Logic
and Computalion, 3(6):643 670, 1993,

X Steflen van Bakel. Intersection type assignment systems. Theovelieal Compuler
Scrence, 1H1:385-435, 1995

This article was processed using the WTEpX macro package with LLNCS style






PROCEEDINGS OF THE VIII CONFERENCE ON

Loaic AND CoMpuTeR ScieNce /04 97

Novi SAD, YUGOSLAVIA, SEPTEMBER |4, 1997. pP. 177-181

The completeness theorem for a temporal logic
with probabilistic operators

Zoran Ognjanovié! and Miodrag Raskovié?

Matematicki institut SANU
Kneza Mihaila 35, 11000 Beograd, Jugoslavija
c-mall: zorano@mi.sann.ac.yn
I'rivodno-matematicki fakultet
R. Domanovi¢a 12, 34000 Kragujevac, Jugoslavija

2
c-mail: miodragranmisanmac.yn

Abstract. A temporal logic angmented with a conntable set of proba-
bilistic operators is presented. The corresponding temporal models are
desceribed. An axiomatization ol this logic is given. The corresponding
completeness theorem s proved.

1 Introduction

Temporal logic is often nsed with a fixed semantics or "flow of time” (see [1]
for further references). A common choiee is the natural monbers. Then, a com-
pleteness theorem is of the following form " given this axiom system every theory
that is consistent. with it has a model with flow of time isomorphic to the nat-
ural numbers™. Temporal logies also have different syntax. It may be varied by
allowing different temporal connectives. Probabilistic logies (see [2], [3], [5]. [4])
are conservative extensions ol the classical logies that are suitable for explicit
reasoning about probabilities,

In this paper we will discuss a propositional logic which language consists of
temporal and probabilistic operators. In this logic we can analyse how probabil-
ities of some events will change i the future. We will consider a class of models,
with the time-line isomorphic to the natural numbers, where every instant of
time i every model has a positive probability measure. We will give an axiom
system and prove the corresponding completeness theorem.

2  Syntax and Semantics

Let o= {p.q.r....} be a set of primitive propositions, and S the set of rational
numbers from [0, 1]. The well-formed formulas are built up from the primitive

P-177
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propositions using negation (=), conjunction (A), nexttime-opertator () and a
probabilistic operator (Ps,) for every s € S. If T' = {a, ..., v, } is a finite set
of fornmlas AT denotes oy A ... Ay,

A model is a tuple M = (W, v, ), where W = {wg,w,...} is an infinite
sequence of worlds (or moments), v : W x & +— {T, L} is a propositional valua-
tion, and g1 associates with every w € W a finitely additive probabilistic measure
p(w) 2 2% = [0. 1] which satisfies p(w;)(w;) > 0 iff j > i. We will alternatively
write w + 7 to denote w;. It follows [rom the above definition that from a par-
ticular world all worlds in the future and only they have positive probabilistic
measures.

The satisfiability of a formula «v in a world w from a model M is detined by:

a) il o € ¢, w|l— o iff v(w)(ev) =T,

b) w|l— Pogo ifl pr(w)({w 44,0 > 0w+ if]— e} > s,
¢) w|l- @r i+ 1|~ o,

d) w|l= —a M is ot w|l— o« and

e) w||— o A F il wlj— o and w|l— 7.

It is easy to see that Oa holds in a w if oo will hold in the next moment. The
intuitive meaning of .o is that the probability of o is greater or equal to s.
In our logic. the well known temporal operator (7, "it is always going to be the
case that’. can be defined by Fsq. Some other probabilistic operators can also
be defined: Pega by P50, Poga by Ps s, Psgo by = Pegor, and Pogor by
Ps v A= Py . We abbreviate O by o, and O™ by O O™ «.

3 An axiom system

The above class of models is characterized by the following sef of axioms:

J—

all instances of propositional theorems
Ol — ) — (O — OB)

3200 =0

4. [’2[!\ — Qo A C)/"\Z]r\

5. Psga

6. P;,n — Psy o, I > s

P:-,‘.(,r — I";,ng > 5

8. (Pyett A PorfB A Poi(=v V =8)) — Pomin1,spm (0 V 3)
9. (Pesov A PerB) — Pepingt (s+rnla V 3)
10. [’;x(\' — Pcegov

1. Psi( — B) — (Psye0 — Pyf3)

12. Qo — Psoo

13. OPsov — Py

b

and rules:

. from {e,cv — 3} infer
2. from «v infer QO
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3. from {8 — O for an arbitrary n > 0 and every m > 0} infer
})’ = O" [’2|(V

4. from { — Q" S 8 for every n > 0 and every k > 1-} imfer
f— Q" P,

5. From o — =(O-pA.. A" ' sp A" p A" P~ 1=p) where p € ¢ is not, in
o, ) infer =,

A finite set of formulas 1" is consistent 10 =(AT). A infinite set of formulas

is consistent if each of s finite subsets is consistent.

4 The completeness theorem

Theorem 1 (Soundness). Every theorcm of the above aziom system s valid
m the deseribed elass of models.

Proof. 1t is casy to see that every axiom is valid, The inference rules preserve
validity, For imstance, let

o — (O pA. AO"'Sp A" pAO" P>i-p)

he a valid formula, where the primitive proposition g does not appear in oo Let
M = (W, 1, 1) be a model, and w € W, Let M' = (W, v/, p), where o'(u)(p) =T
U w = 1w+ n, and o' = v for the other primitive propositions. Then, pe(u)({u +
tod > 0w d|l=pt) = 0, and p(u)({u+i.0 >0 u+dl|— —p}) = L0t follows
that

[l

wl|l=arr O pA . A O '=pAO"pAO" Psy=p

and consequently that wlb a0 But, o and vagree on all primitive propositions
i o sowe have wl|l=y —a0 Sinee o holds ean arbitrary world inoan arbitrary

model s vahid,
Theorem 2 (Completeness). Every consistend formula o has a model.

Proof. Let vy, ..., o are all primitive propositions inoo, and ¢y ga. 0 an enu-

meration of all primitive propositions except ey ey, Let oo o0 be an

entumeration of all formulas so that for every n, Q=g A A" " =g, AO" ¢ A

()" Py =gy, appears i the sequence hefore any other formula that contains ¢,
We define a sequence of sets of formulas in the following way:

| ’I;I - n
2 |'At|r l'\l‘r'\,‘ I ‘ “
(a) f T; U {evi} is consistent, then Tiyy =7, U {og ). otherwise

(b)y if o = 5 — O"P>14 and T, U {a;} is not consistent, then Tiyy =
T,y — O"=O™ 3}, for an m > 0, so that Ti4y is consistent, otherwise
(e)if @« = 9y — (_/')”I';.,,f and T; U {og} is not consistent, then T4, =

Tiu{y — O"=Ps %,ﬂ. forak > L sothat T4 is consistent, otherwise
(d) Tiga = T;
3. T =W
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Every T; is a consistent set. It is easy to see that, if T; is obtained by the rules,
2.a, 2.b, and 2.d. The same holds for the other rules as well. Suppose that there
is no formula O™ O™ # so that T;_; U{O"*= ()" B} is consistent, then:

AT ) AN (y — Q”]’>|/1 ). by hypothesis
2. F (AT ) Ay = O"= O™ B)), for every m >0
(

|
A
3. F(ATi—1) — =(y — Q" P518), from 1.
4

CHNTZ) = 2y — O O™ 3), from 2., for every m > 0
h. F(NT;i—y) = (y — = O" = O™ ), from 4., for every m > 0
6. F (/\],_]) (7 — O" O™ ), from 5. by the axiom 2, for every m > ()
7. F((ATiz ) Ay) — O O™ B, from 6., for every m > 0
8. F | (/\F_l y) — Q" Py 4, from 7. by the inference rule 3
9. F (ATi—1) — (v —= Q" P51 /3), from 8.
10. + ﬂ(/\],_l) from 3. and 9.

a contradiction. The similar holds for 2.c. Finally, if T' is not consistent, there is
a finite T" C T so that = =(AT”). But, then there is at least a 7; D T" that is
also inconsistent,.

T is a maximal set. For an arbitrary formula 3, either 3, or =3 is in 7.
If it does not hold, suppose = . F = ap, and k = maxz{m,n}. Then
F =((ATE) A ) and B =((AT)) A =f3). But, then F —(AT}), a contradiction. For
every n O=¢n A ... AO" g A QMg A Q" Py1—¢n belongs to T'. It follows
from

= (O—'qu /4 R 4 O”_ Iﬁqu A O”’IH A On PZ 1 _'(ln.)' for some i
F =(AT;), by the inference rule 5

Similarly, it can be shown that 7' contains every theorem, and if O™ Ps,_1 /7 € T,
then O"P>,8 € T. -7

Now, we will define the canonical model M = (W,v, 10). W = {wg, wy,. ..},
wo =T, wipr ={F:OF € wi}, v(w)(p) =T i pew, plw){w+i:i>0,p€
w+1}) = sup{ P>, € w}. Every w € W is consistent. Otherwise, we have the
smallest £ so that wy 1s not consistent:

E=(Aii), B, Ba, -} C g
FO-(Aif)
E=(Ai O Bi)

and wy_q 1s not consistent, a contradiction. Every w € W is maximal, as well.
Otherwise, there are the smallest £ and 3 so that 3, =3 € wg. But, then Of, =0
B & wi—y, and wy_; is not a maximal set.

The axioms and rules guarantee that p is a finitely additive probabilistic
measure, that pg(w)(w + i) > 0, and that M is a model. For example, from the
axiom 4, it follows that g i1s a nonnegative mapping. If = 3 is a theorem, then
by the inference rules 2, F Of, F O%8,.... By the inference rules 3 we have
F P> /3. Then, by the construction of the set 7" and the definition of the measure
i, p(w)({w +i,i > 0}) = 1. The other properties of y follows similarly. From
the construction of the set 7" we conclude that for every ¢ there is a primitive
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proposition denoted ¢;, so that ¢; € wy + i, and ¢ & wy + j, for j # i. By the
axioms L and 12,06 follows that for every w € W p(w)(w + i) > 0.

Finally, we can prove by the induction on the complexity of the formulas
that 7 € w il w||— 7, and particularly that o is satisfiable. For the primitive
propositions, it follows from the construction. If # = =y, we have w||— g iff it
is not w||— 7 iy ¢ w. If 3 =75 Ad, we have w||— # iff w||— v and w||— & iff
yewand &8 € wifl yAd € w. If f = Oy, we have w||— 3 iff w+ 1||— 1
ff y ew+1iff 8 € w. If g = Ps,y, let w||— B. Then sup.{Ps,y € w} =
p)({w+i 0 > 0,4 € w+i}) > s. From the construction of the set 7
and by the axiom 5, we conclude 4 € w. On the other hand, if J € w, then
supp A Popy € wh = plw)({w +i 2 > 0,4 € w+1i}) > s, and w||— /3.

5 Some comments

I this paper we demand that from every world every its successor has a posi-
tive, but arbitrary measure. We can give complete axiomatization of logics with
another requirements, for example: p(w)(w + i) = ¢;, for an arbitrary sequence
{ev oo, b sothat 570 ¢ = 1 or even stronger p(w)(w + i) = L,

Onr choice of type of the measures imply that temporal operator ¢/ can
be defined as .. On the other hand, we can allow a different situation, where
p(w) (1) can be 0. Then, (s an independent operator and we have to change
the axiom system to ohtain a complete axiomatization. For example, we have to
add the following axiom:

o — Psn
( Ps)
and the rule;

from 3 — )" for an arbitrary n and every m > 0 infer # — O™ (/o
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Generating the products, candidates for
dividing the polynomial expressions

Milos Rackovié

Faculty of Sciences, Institute of Mathematics,
Trg Dositeja Obradovi¢a 4, 21000 Novi Sad, Yugoslavia

Abstract. Dividing the polynomial expressions into the products is a
basic part of the algorithm for reducing the number of caleulating oper-
ations in the analytical expressions of the mathematical models of dif-
[erent systems, On the basis of the mathematical background the data
structures and the algorithm for dividing the polynomial expressions is
developed. The central topic of paper is the algorithm for generating all
products which are the candidates for dividing,

1  Introduction

Mathematical modelling of the complex systems generates the analytical ex-
pressions with great calenlating complexity which should be reduced in order to
obtain the efficient model. The process of reducing caleulating complexity of the
analytical expressions is one of the basic processes in the generation of complete
mathematical model. In [1], the complete procedure for generating the symbolic
models of the dynamies of complex robotic mechanisins is described and in [2]
is given the structural system analysis of the reducing calculating complexity
process.

All of the analytical expressions obtained in [1] are in polynomial form

/ L

¥= 3 ke J] 21" (1)

1= =1

where

Y - s the variable to be caleulated;

k; - 1s a constant coeflicient related to the -th addend;

ri - s one of the basie variables of the robotie system model represented by
its name (q.q.q.5m g, cos q. where ¢ represents the degree of freedom). For each

addend the same sequence of variables x5, j = 1, ..., L is used.

P-183
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ey - the exponent of the [-th variable of the i-th addend. The algorithm
for forming the mathematical model ensures that each of the exponents is a
nonnegative integer number.

The main task is to form the calculation graph for the chosen analytical
expressions of the type (1), with the least number of mathernatical operations.
To obtain a maximal reduction in the number of mathematical operations in
[1-5] is proposed the dividing of the expressions in the following form

W
Y = 3 Vot - Yas) + Yiwa (2)

w=1

where Yy, 1, Ywo, w = 1, ..., W and Y4, are also the expressions of the type (1).

The expressions Yy, Yo, [ = 1,...,W have two addends at least, and are
determined in a way which maximises reduction of the number of mathematical
operations. Yy 41 represents the remainder of the expression Y which can not be
divide into products any more. After dividing the expressions into the products
the monomial extraction algorithm is applied which forms the calculating graph
for chosen expressions [1].

This paper gives mathematical basis for developing the algorithm for dividing
the expressions into the products. The data structures and the algorithm for
generating all possible products, candidates for dividing are described too.

iFrom all candidates for dividing, these products are chosen which give the
largest reduction in the number of calculating operations. Then, the dividing on
chosen products is performed. This part of expressions dividing process 1s not
the topic of this paper.

2 Mathematical Background

The concept of structural matrices was introduced in [6] to represent the ana-
lytical expressions of the robotic quantities.
Structural matrix S of the expression Y is represented with the vector of

.. . g T . ' 5 T
coefficients Kg = [f, e k;] , the vector of variables Xg = [:Ir‘f‘, ,rf] and
the matrix of exponents

g
g s 1L,

Eg = 2 2L
5 o8 5
€T1 T2 - °IL

The problem of dividing some expression into the products is analogous to the
problem of finding the structural matrices A and B which satisfy the equation

A-B=C (3)
for given structural matrix (. This problem can be written by equations

Es-Ep=F¢g; Ka-Kp=Ke¢ (4)
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where E4. Ep i Eeoare the exponent matrices of the structural matrices A,
B and ') and their dimensions are [ x L, J x L and M x L (M = [ -.])
respectively. Na, N and N¢ooare the vectors of coeflicients of the structural
matrices A, B and (') and their dimensions are I, .J and M respectively. The
matrix ¢ represents the exponents of the expression of the type (1) which we
want to write in the form of product of the expressions of the same type. The
matrices [y and Fgoare the unknowns in this equation. If the solution of the
system exists, then the matrices /4 and E'py which satisly the equation will
represent the exponent matrix and vectors K4 and KNpg will represent the vector
of coeflicients of the expressions which form the product.

P e o o [ AT B BT . ¢ BT
Let us denote vectors [r“ o BER). 5 [Bps iy and [: 2 g gl m,‘] (rows
of the matrices 24, Iy and ) with et «‘,“ and ef respectively. Now, the

equations (1) can be written as the system in a vector form
A B¢ LA B _ ¢ <
By +'j = C€m » A‘i l‘; = A‘m, ('))
m={t=10) s+ T=1ulpd =1, aad
where the addition of the vectors is defined in the usnal way.
In 1. 4] has been shown that satisfying equations (6) for all different ml,
m?2, mdomd € {1 ., M} gives the necessary and sufficient condition for existing
the solution of the system ().

¢ /\.(‘
{ Y (it ¢, Ml . m2 »
ol T 3 = G T O LC - JC (())
‘mi m

When the conditions (6) are derived two rows from the matrix £, and Fpg,
Lestwo elements of the vectors Ny and K. are chosen. Also, by choosing four
rows [rom the matrix £, four elements of the vector K¢ are chosen. This
means that these four addends from the expression described by the exponent
matrix Feoand the vector of coeflicients K¢ are obtained by multiplying two
expressions each containing two addends which are deseribed by the chosen parts
of the matrices £, and Epy and vectors K4 and KNpg. Thus every condition of
the type (6) represent a "2 x 27 product.

If i the matrix /¢ and in the vector of coeflicients K¢ exist N couples
(et oot ) and (kS kS ) myny € {1 M}, n= 1, N respectively, and the

following equations hold

Jes X O
( (AR ! . M . | .ll. o A'.‘. i _ "N, (7
“, Cy, = Ca, Oy, = ... = OpN, ep, b [_-" —. -—-k’. = = e )
1y 95 N,

then this couples represent the "2 x N7 product in analogous way as in 2 x 2
Case,

Let us take the two products with dimensions 2 x N' and 2 x N? respectively,
which are described by the equations analogous to (7). By this, 2 x N! elements
are chosen in the matrix Fo and in the vector K¢ in the first case and 2 x
N? elements in the second case. These elements represent the addends of the
expression given by the structural matrix €7 The sets of all indexes belonging to
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the first elements in the couples of the first and the second product, are denoted
by
Lo ={ndlnt =1, . W'} ; Lipe ={niln? =1,..,N?%}

respectively. The intersection of these two sets 1s calculated.

/[‘_,\m m II\N—’ = j]‘N = {'H,]|7I = l,...,J’V}

The sets of these indexes, belonging to the second elements in the couples of
products; which correspond fo the first elements whose indexes are in set /4 y
are denoted by

IR 1 (2]
Ioonigy o = 1oy € vl o Lone g, o = {ngny € L v}

respectivelv. 1 1y gy o (Vonve g, = O it is possible to construct the new
product. with dimension 3 x N by joining together corresponding elements of
two existing prodncts. The new product is deseribed by the N ordered triples
(e et el ) and (kg Lkl kS ) where ny € Iy v, ng € Iy nayg,  and ny €
Iy N1, - The products with greater dimensions are constructed in the analo-
gous way.

This mathematical analysis serves as basis for constructing the algorithm
for generating the products, candidates for dividing the expressions. The first
step is to represent the expression by the structural matrix. The next step is
generating the equations of the form (7) for different combinations of the ad-
dends and for N great as possible. Fvery equation represents the 2 x N product.
On the basis of starting products, we then construct all possible products with
greater dimensions. By this procedure all products, candidates for dividing are

generated.

3 Generating the Products, Candidates for Dividing

After representing the expression. which have to be divide into the products,
by the structural matrix, we need to construct all possible products, candidates
for dividing. The basic idea of the procedure for generating the candidates is
in following. The couple of addends is chosen, for which the difference between
the exponents and the quotient hetween the constant coefficients are calculated.
Then, for all other couples of addends these quantities are checked and if both
are the same (equation (7)) this couple is added in the product which already
contains the starting conple. When we check the conditions for all couples, the
new product is formed if it contains the two couples at least. This procedure
is repeated for all possible couples of addends. We do not form the product for
these couples which are already member of some other product because the tran-
sitivity law for equation tells us that the same product is to be generated. When
we repeat the procedure for all couples, all possible products with dimension
2 x N for different values N > 2 are generated and stored in the list of prod-
ucts. The data structure for representing the product is given in the pseudocode.
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struct produet |
int g mataddfm]n]:
struct product « nertpr: |

Dimension of the product is represented with 1w and noand equals m < n.
The matrix maladd[n][n] represent indexes of the addends which forms the given
product. Iy nertpr, the pointer on the next product in the list of products is
given. Procedure [form Pro which performs generating of the products and their
storing in the hist of products is given in the pseudocode.

FormPro(S) |
['()l‘(l'l =1:il=< il ++) {
for (12=0l4+1:2< 1024 +) |
i (Not Mo L(il,i2, lispro)) |
. ) e
MemPair(il,i2,pr); s = ¢ = e2; ¢ = i’ 8
for (i3 =1 ;i< ;i3 ++) |
for (id=i3+ 1, <1 ;id++4) {

. , k3
il (s == oy — ey &g == Z2) MemPaiv(i3, id, pr);
o s
else if (s == 4"3‘ - 4;‘ Ll g == /T’;l) MaomPair(iA a3, pr): )}
1

MomPro(pr lispro). |} |

The procedure Not MemL(il.i2) cheeks if the given couple (11,22) is already
stored m the some product from the list spro. The procedure Mem Pair(il. 2. pr)
stores this couple in variable peein which the complete product is stored. By pro-
codure Mo Pro(pr, lispro) product pris stored in the st of products lspro.

The next step is generating the new products with greater dimensions by
Joming existing products i a way deseribed in the previons section. The proce-
dure Gen AUPvo(lispro, avvpp, dap) performs generating of all possible products
with dimension m < n for different m and n based on the products candidates
which are stored m the List of products lispro. An array of pointers arrpp with
dimension dap is introduced, where every member of this array points on the
first element in the list of products which has corresponding value for m. The

procedure Gen AULPro s given in psendocaode.

Cen AL Prvo(lispro. avepp, dap) |
pl = lispro; avrpp(0] = lispro; dap = 1;
while (pl= > nextpr! =NULL) {
for (1 = 0 < dapii + +) |
if (1 ==0) p2 = pl—= > nertpr;
else p2 = arrppli]:
while (p2! =NULL) {
i (NotMem(pl, p2) & ConPoss(pl, p2)) {
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p3 = GenPro(pl,p2,m): InsPro(p3, m, arrpp, dap); }
p2 = p2— > nexlpr; }}
pl = pl— > meatpr; }
Jomm Lis(lispro, arrpp, dap); }

The idea of the procedure is to matceh the different products, and if it’s
possible the new product is constructed by joining the two matched products.
This new product is stored in the list of products on the corresponding place.
The pointer pl passes through the starting list of products, while the pointer
p2 beside through the starting list passes through all new generated products.
By this procedure, finding and performing all possible products joining is pro-
vided. The procedure NotMen(pl, p2) checks if the product pl is the member
of the product p2 if the p2 is some of the new generated products. The proce-
dure ConPoss(pl.p2) checks when is possible to join these two products and
procedure GenPro(pl, p2.m) performs the joining if it’s possible. The joining is
performed by applying procedure described in section 2. The variable m returns
the number of rows in the matrix of addends for the newly-formed product. The
procedure InsPro(pd, m, arrpp, dap) mserts the newly-formed product p3 in the
list. of products on which points the corresponding pointer from the array arrpp,
depending on the value m. If p3 is the first product for this value of m, the new
pointer is formed in the array arrpp which points on the new list of products.
The dimension of the array, dap is incremented too. When we pass through all
product from the starting list it is necessary to join together all list of prod-
ucts, pomted by pointers from the arrpp, in the one hist of products lispro. The
pointers from the array arrpp still point on the same products as before joining.
This joining is performed by the procedure JoinLis(lispro, arrpp, dap). In this
way all products, candidates for dividing the expression are stored in the list of
products lispro.

4 Conclusion

The reduction of calculating complexity of the analytical expressions, participat-
ing in the mathematical model of system, is necessary part of the mathematical
modelling process in symbolic form. The aim of reducing the model calculating
complexity is the need for calculating numerical values of the model quantities
in the real-time regime.

[n this paper, the first part of the algorithm for dividing polynomial ex-
pressions into the products is described, which is consisted of generating all the
products, candidates for dividing the expressions. The generating procedure is
obtained on the basis of detail mathematical analysis which gives the necessary
and sufficient conditions for dividing the expressions into the products.

The basic characteristic of the generating procedure is that instead of search-
ing among the products and checking the conditions for all products, this pro-
cedure implements given mathematical analysis in the two-step algorithm. First
step comprises generating all products with dimension 2 x n, while the second
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step performs the constructing of the new products by joining of the existing

ones. In this way, the algorithim is obtained which has practical value for complex

analytical expressions too.
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A Characterization of Ellipses by Discrete
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Abstract. In this paper we prove that four integers are enough for
the unique coding of ellipses with axes parallel to coordinate axes. This
cilicient and casily computable representation needs an asymptotically
minimal number of bits and enables a constant time approximate recon-
struction of digital ellipses. [t is shown that the errors in estimating the
hall-axes and the center position of digitized ellipse tend to zero while
the number of pixels per unit tends to infinity, which corresponds to the
situation when the digital picture resolution increases.

1 Introduction

Among the most important problems considered in computer vision and image
processing related to digital pictures analysis, there are recognition of the stud-
ied object, its efficient representing and finding the algorithm for recovering the
object from its representation. Digital shapes which appear the most often in
practice are digital straight lines and conic sections (in the Euclidean plane) and
so-called surfaces ol the second order (in the Euclidean space). Since the least
squares method, which gives efficient representations for digital straight line seg-
ments ([2]), digital parabola segments ([3]) and digital plane segments ([1]). is
not appropriate for representing ellipses, where it leads to nonlinear problems
which require complex numerical techniques for the solution, in this paper we
develop the idea of separating sets for proving one-to-one correspondence be-
tween digital shapes and their representations by a constant number of integers,
introduced in [1].

In Section 2 we give an asymptotically optimal rvprvsuul.nl.inn of digital el-

s 2
lipses, corresponding to the ellipses of the form (%) + (”,;—,") <1,A,BER,

r is the number of pixels per unit (i.e. resolution), by four integers.

An efficient estimation of the original ellipse half-axes, as well as the coordi-
nates of its center, is given in Section 3. It is shown that errors of that estimation
tend to zero when the resolution of digital picture increases.

P-191
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The numerical data (Table 1.) strongly confirm the theoretical results. For the
ellipse (at random position) with the half-axis exceeding 1000, relative deviation
in estimating the half-axes and the center position is less then 0.0003%.

2 Representation of Digital Ellipses

2
Consider an ellipse £ in the Euclidean plane, defined by (%)2 4 <% < 1.

The ellipse £ can be digitized by using digitizing method in which all the digital
points (points with integer coordinates) in the ellipse are taken. In this way, we
get the set of digital points, defined by D(E) = {(i,7) | B*(i—a)?+A%(j—b)> <
A%B?r?, 4, j are integers}, which will be considered as digital ellipse. D(E) can
be efliciently coded by four integer parameters:

— the number of points of D(FE), denoted by R(E);

— the sum of z-coordinates of the points of D(E), denoted by X (E');

— the sum of y-coordinates of the points of D(E'), denoted by Y (E);

— the sum of squares of the xz-coordinates of the points of D(E), denoted by
XX(E).

These parameters can easily be computed for any ellipse. Very important
property of this code is that it provides one-to-one correspondence between the
set of digital ellipses and the set of their representations. That is the main result
of the paper and it is presented by the following statement:

Theorem 1. Let D(Ey) and D(E3) be two digital ellipses and let (R(E), X(E1),
Y (E)), XX(E1)) and (R(E5),X(E32),Y(E2), XX(E2)) be their representations,

respectively. Then
R(E1) = R(E2) AN X(E1) = X(E2)ANY(E) =Y(E) NXX(Ey) = XX(E2)

s equivalent to

D(E,) = D(E5).

Proof. 1t is obvious that all the parameters R(E), X(FE), Y(E), XX(FE) are
uniquely determined for a certain ellipse E, so (D(E1) = D(E3)) = R(E1) =
R(E2)AX(E1) = X(E2) ANY(E)) =Y (E) AN XX(E1) = XX (E>) follows from
the definitions.

The opposite direction of the statement will be proved by a contradiction.
Let’s assume that the relations D(E) # D(E2) and R(E,) = R(E2), X(E1) =
X(Es), Y(Ey) = Y(E,), XX(E1) = XX(F,) are satisfied. Then we have
#(D(E1)\ D(E»)) = #(D(E2) \ D(Ey)) # 0, and

Z r= Z Z, (1)

(z,y)eED(EL)\D(E2) (x,y)ED(E2)\D(E1)
> y= > Y, (2)
(z,y)€D(E1)\D(E2) (z,y)€D(E2)\D(E1)

> 2% = > 22, (3)

(z,y)ED(EL)\D(E2) (#,y)ED(B2)\D(E1)
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Two ellipses, satisfying #(D(Ey) \ D(E2)) = #(D(E2) \ D(E1)) # 0, can have
zero, one, two, three or fom lll(Pl\G(‘thll points. If they have less then four
intersecting points, the sets D(E)\ D(£) and D(Ey)\ D(F)) can be separated

by the straight line az + by = ¢, in such way that

ar + by < ¢ for (z,y) € D(Ey)\ D( and

az + by > ¢ for (z,y) € D(Ly)\ D(

Ey)
(Er)

is satisfied. This gives:

L H(D(E)\ D(E

Z e

(x,y)ED(E\D(E2)

> Z Y
2)

(€ J)ED(LI)\D(UJ) (z,y)ED(EV)\D(E

=a- >, v
€ r/)(-:D(L WD (EL) (e, y)ED(E2)\D(E,)

> 2, H(D(E2) \ D(EY)).

(x,y)ED(EN\D(E,)

The contradiction e (D )\ D(F9)) > - #(D(E)\ D(F,)) finishes the proof
i this case.

Let us suppose that £y and [ have four intersection points. Obviously, for
two ellipses By and [y, given by the equations Iy (z,y) = 0 and Fy(z,y) = 0
respectively, the set of all conies Fiy(a, y), A € It, containing all the intersection
points of Ey and [y is defined by the equation

Fa(z,y) = Bi(z,y) + Ao(2,y) = az® + by* + cx + dy+ e = 0.

If parameter A is chosen in such way that the coeficient of y? in the equation
Fi(x,y) = 0is annulled, (the existance of four intersection points implies that
the coeficient of 2 will not he annulled then), we get:

I. il horizontal axes of £) and I belong to differe nt straight lines, the equation
of the form Fy(z,y) = az? + cr + dy 4+ ¢ = 0, which is the equation of
parabola with the axis parallel to y-axis. The f;u'L that any two conics may
have at most four intersection points (in other words, none of the existing
four intersection points can be the point of contact of 'y and Fy, or F) and
I25), implies that Fy separates the sets D(Ey)\ D(FE2) and D(E3)\ D(E,).
The conclusions follow analogously as in the case when the separator for the
sets D(Ey)\ D(E+) and D(E4)\ D(Ey) is a straight line.

2. if horizontal axes of F, .m(l 75 belong to the same straight line, the equation
of the form Fy(z,y) = azr® 4 cx+4¢ = 0, which is the equation of two straight
lines of the form = = x, and r = r4. Since these lines separate sets D(E,) \
D(E5) and D(E3)\ D(E;) in such way that the relation az? 4 cz +¢ < 0 is
satisfied for the points from one of the sets D(F;)\ D(E4) and D(E2)\D(Ey),
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while the relation az? + ex + ¢ > 0 is satisfied for the points from another,
the conclusions follow as in the previous case.

Obviously, YY(£) can be used instead of XX (F) for the representation of
the ellipse E, where Y'Y (E) denotes the sum of squares of y-coordinates of the
points of D(E).

For convenience and without loss of generality, in the rest of the paper it will
be assumed that all the digital points that appear have positive coordinates.

3 Estimation of the Original Ellipse from its Code

N b 2
An important question is how efficiently an ellipse F : (—T-A_T“)“ + (%) < 1 can

be recovered from (R(FE), X(F),Y(E), XX(E))-code of its digitization D(FE).
In this section it will be shown that the proposed coding scheme enables an
approximate reconstruction of the parameters a, b, A -1 and B - r with errors
tending to zero while rr — ~c.

A (k,l)-moment, denoted by my, ;(,5) for a continuous shape S, in 2D-space

is defined by:
e l(S) = // 2F oy da dy.
L]

If 5 is a continuous ellipse £, given by the inequality (Z

2
I’) < 1, then

2)” 4

A

m(,yo(E):ﬂ-7'2~A~B, mio(E)=7-a-r ;

e
B

-B
5

.
r?

"+
2 A
) . A i
mo(Ey=m-b-r*-A-B and mao(E)=A -B-v" 7 ( 1 + (1“) :

Thus, if the moments of the continuous ellipse £ are known, E can be recon-
structed easily. Namely,

771.1y0(E) bh— 7”0‘1(E)

= ———  and , while
771,()‘(]([_’7) 7”0,(](
2 . ;
Ar—m— —m—HH— . L9 A 3 R . é I
o1 mo.o(E) \/7"~»0(E) mo,o(E) — (m1,0(£))*  and
(7'lo,o(E))2

B-r

T 9.x- Ve o(E) - mg o E) — (mly(,(E))z'

Four integers, R(E), X(F), Y(E) and XX(FE), appearing in the proposed
characterization of digital ellipse D(F), can be understood as discrete moments
of that discrete shape. So, it is natural to expect that the digitization of the
ellipse, defined by

. _ X(E) ’ Y (E)

T RE) & A 02) <1
2. /XX(E)-R(E) - (X(E))? (R(E))” -
rtmy - VXX(E) - R(E) — (X(E) e e
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can be a good approximation for the represented digital ellipse D(E).

In order to estimate the half-axes and the center position of the original
ellipse, we need asymptotical expressions for R(E), X(F), Y(F) and XX (FE):
Theovem 2. Lel the digital cllipse D(F) be the digitization of an ellipse F,

. 2
given by the equation (%)" + (yh.;f') < I, where a > A-r and b > B -r s
satisfied. Then the following asymplotical expresions hold:

R(Ey=A-B- 7r+0( % (4)
X(EY=a-A-B-»* -7+ 0(ar), (5)
Y(E):b~/\-Ii’~7"-7r+(’7(b-1'); (6)
X(E)=A-B-r*.x. (14’ +u,'~’> +0(a? 7). (7)

Proof. For the asymptotical expresion (5), we have

latAr]  Lo+EAr)E=(i-a)?
X(E) = > = ¥ > i

(ro1) i:[rl—/tr] s == B (Ar)2=(5—a)2
24 f={i=y A rpi=ar

B latAr] latAr]
=2 I E i V(A 1r)? - I—(L)"!+‘ Z (1)
i=[a—A-r] i=[a—Ar]
I at+Ar [atAr]
:27‘[_"' e (A r)? = (x—a)? d(|x])+ 0O l‘_[;‘r]i

=a-A-B-r* 7+0(-r)
The relations (4), (6) and (7) can be proved analogously.
The optimality of the proposed code is a consequence of the above theorem:

Corollary 3. The proposed (R(E), X(E), Y (F), X X(FE))-code requires an asym-
plotically optomal (nmanvmal) number of bats.

P'roof. Under the assumptions of Theorem 2, the number of bits required for the

numbers R(E), X(F), Y(FE) and XX(FE) is
Olog(r?) + log(a - r*) 4 log(b - ¥*) + log(a® - ¥*)) = O(log(max{a,b})).

On the other side, a trivial lower bound on the number of different digital
ellipses which can be inscribed into an integer grid of size (a4 A-r) x (b+ B-r)
is (a4 A-r)-(b+ B-r).So, the number of bits, required for the unique coding
of digital ellipses, is at least log((a + A -r) - (b+ B -r)) = O(log(max{a,b})).

Since the lower bound is reached, the proposed code is optimal.
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Now, we can give an upper bound on the precision in estimating the half-axes
and the center of an original ellipse from its code.

Theorem4. Let the digital ellipse D(E) be the digitization of an ellipse IV, given
: ; 2 . ety ? . o
by the equation (‘”A_r“) + (ALRT[) < 1. Then the following error estimmations hold:

Y (E)

X(B) q Y(E)
R_<E_)_1:o<_), ’*‘EJ_l:o(l)‘
« P b r

2 - JXX(E) RIE)— (KB 1
R(E) v —1=0 (—) (8)
A r
(R(E))*
2m\/XX(E) R(E)-(X(E))? ! 2
=T =@1=1}. :
o [=¢ <7> (9)

Proof. The first two relations follow by applying Theorem 2. For proving the
relations (8) and (9), let’s notice that the proposed approximate value for the
length of corresponding half-axes of F end E’, where E’ is obtained by trans-
lating E' for —M,(E) in horizontal direction and M, (F) denotes the minimal
abscissa of the points belonging to D(F), is the same. Namely,

R(E)= R(E'), X(E)=[a—A- -] R(E)+ X(E)

and XX(E)=([a—A-r])2-R(EV+2-[a—A 7] - X(E')+ XX(E"),
which implies that the equalities

’ ' ( = 4 @ . Y s )2
mE) VXX(B) R(E) ~(X(B)P = gy - VXX(B) - R(E) ~ (X(E))

and

(R(E))* (R(E"))?

2.7 /XX(E)-R(E) — (X(E))? 2-7-/XX(E)-R(E") — (X(E))?

are satisfied. So, we can assume that (A-r—1) < a < A -r. By applying
Theorem 2, the relations (8) and (9) follow.

The previous theorem shows that the errors in estimating the half-axes and
the center position of the original ellipse from the corresponding digital data
tend to zero while » — oo. The experimental results are in accordance with
the theoretical result; errors in ﬁtimating the coordinates of the center, @ and

b, and the half-axes, Ar and Br, reconstructed from the code of the ellipse

2
(%)2 + (%) < 1, are presented in Table 1:
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LA o] o] - ][E -] el [ ]

73.6 19.8([0.0050508(0.0106625|0.0002302{0.0035037

46.5 o T7733.7) 199.9 (l.()()!(i]ﬂlil 0.010778110.0000051{0.0001901
378 733.7 99.6{0.0001912{0.0011011]0.0000414(0.0000494

TT337.31 1991.11{0.0004201{0.0007779{0.0000001]0.0000066

277 3388.8 91.11{0.0001253{0.0004362|0.0000077{0.0001822

445.6 3888.31  991.1{[0.0001532{0.0004898(0.0000116[0.0000164
997 7 888331 911.91{0.0000154[0.0000305{0.0000011{0.0000044

’ 888338.8[11999.9({0.0000389({0.0000288[0.0000001{0.0000003

9393.3]  686.6(|0.0000027[0.0000085]0.0000005{0.0000031
38388.81 9119.11{0.0000016]0.0000036{0.0000002{0.0000003
09399.3] 4888.8([0.0000001{0.0000012{0.0000002{0.0000011

YT «
1271393393 3[68886.6]0.0000001[0.0000007|0.0000001[0.0000001
Table 1
X(B) i Y(B)
where a = I_"((‘TT T F(%T‘
T T 7. R(E))?
Ar = g VX X(E)- R(E) - (X(E))?, Br= (L)

2-1\--\/)()((13)-1'\‘.( E)y=(X(E)?"

4 Comments and Conclusion

In this paper our studies are focused on the digital ellipses and problems of
their representation and reconstruction. In the previous sections representation
by constant number of integers, requireing optimal number of bits, is presented.
One-to-one correspondence between the digital ellipses and their proposed codes
is proved. That enables an approximate, constant time reconstruction of the
digital ellipse from its proposed code. The efliciency of the reconstruction is
analysed and it 1s shown that the errors in estimating the half-axes of the ellipse
and the coordinates of its center tend to zero whi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>